Skip to main content

Advertisement

Log in

Potential Application and Bactericidal Mechanism of Lactic Acid–Hydrogen Peroxide Consortium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

It has been found that lactic acid and hydrogen peroxide (H2O2) displayed co-operatively enhanced killing activity to pathogens. The synergistic effect was investigated with using several microbe species, suggesting that low concentration of lactic acid and H2O2 could kill both Gram-negative and Gram-positive bacteria or even fungal pathogens. To explore the mechanism of synergistic sterilization of lactic acid and H2O2, Escherichia coli DH5α was used as the indicator bacteria. Lactic acid and H2O2 could generate hydroxyl radicals depending on the intracellular iron ions. The genomic DNA of treated cells was fractured and dispersed, and the △recA strain was more susceptive to the treatment, indicating that DNA damage was a cause of cell death. Furthermore, serious leakage of cell contents occurred in the treated cell, suggesting that the treatment also resulted in cell membrane permeability changes. This research shows that lactic acid-H2O2 consortium is a hopeful safety bactericide in agriculture or food production processes and provides a greater understanding of the mechanism of synergistic sterilization of lactic acid-H2O2 consortium in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69(1), 634–640.

    Article  CAS  Google Scholar 

  2. Linley, E., Denyer, S. P., Mcdonnell, G. E., Simons, C., & Maillard, J. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596.

    Article  CAS  Google Scholar 

  3. Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166(2), 519–527.

    Article  CAS  Google Scholar 

  4. Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 1758(8), 994–1003.

    Article  CAS  Google Scholar 

  5. Moller, M. N., & Denicola, A. (2018). Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radical Biology and Medicine, 128, 137–143.

    Article  CAS  Google Scholar 

  6. Watt, B. E., Proudfoot, A. T., & Vale, J. A. (2004). Hydrogen peroxide poisoning. Toxicological Reviews, 23(1), 51–57.

    Article  CAS  Google Scholar 

  7. Atassi, F., & Servin, A. L. (2010). Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathog. FEMS Microbiology Letters, 304(1), 29–38.

    Article  CAS  Google Scholar 

  8. Huang, Y., & Chen, H. (2011). Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control, 22(8), 1178–1183.

    Article  CAS  Google Scholar 

  9. Reis, J. A., De Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews, 4(2), 124–140.

    Article  CAS  Google Scholar 

  10. Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165.

    Article  CAS  Google Scholar 

  11. Alakomi, H. L., Skytta, E., Saarela, M., Mattilasandholm, T., Latvakala, K., & Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001–2005.

    Article  CAS  Google Scholar 

  12. Fenton, H. J. H. (1894). LXXIII.—oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65(0), 899–910.

    Article  CAS  Google Scholar 

  13. Ali, M. A., Yasui, F., Matsugo, S., & Konishi, T. (2000). The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radical Research, 32(5), 429–438.

    Article  CAS  Google Scholar 

  14. Kowaltowski, A. J., & Vercesi, A. E. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology & Medicine, 26(3-4), 463–471.

    Article  CAS  Google Scholar 

  15. Sieuwerts, S., de Bok, F. A., Mols, E., de vos, W. M., & Vlieg, J. E. (2008). A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 47(4), 275–278.

    Article  CAS  Google Scholar 

  16. Gourama, H., & Bullerman, L. B. (1995). Relationship between aflatoxin production and mold growth as measured by ergosterol and plate count. LWT- Food Science and Technology, 28(2), 185–189.

    Article  CAS  Google Scholar 

  17. Qin, M., Lin, Z., Wang, D., Long, X., Zheng, M., & Qiu, Y. (2016). What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli ? Environmental Toxicology and Pharmacology, 41, 251–258.

    Article  CAS  Google Scholar 

  18. Gomes, A., Fernandes, E., & Lima, J. L. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45–80.

    Article  CAS  Google Scholar 

  19. Sagrista, M. L., Garcia, A. E., Africa De Madariaga, M., & Mora, M. (2002). Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-l-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radical Research, 36(3), 329–340.

    Article  CAS  Google Scholar 

  20. Lee, P. Y., Costumbrado, J., Hsu, C. & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 20(62), e3923–e3923. 

  21. Zhang, C., Xin, Y., Wang, Y., Guo, T., Lu, S., & Kong, J. (2015). Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Applied and Environmental Microbiology, 81(18), 6108–6119.

    Article  CAS  Google Scholar 

  22. Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158(1), 9–14.

    Article  CAS  Google Scholar 

  23. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640–6645.

    Article  CAS  Google Scholar 

  24. Arroyo, E., Enriquez, L., Sanchez, A., Ovalle, M., & Olivas, A. (2014). Scanning electron microscopy of bacteriaTetrasphaera duodecadis. Scanning, 36(5), 547–550.

    Article  CAS  Google Scholar 

  25. Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., Franco, B. D. G. D. M., Converti, A., & Oliveira, R. P. D. S. (2013). Novel biotechnological applications of bacteriocins: a review. Food Control, 32(1), 134–142.

    Article  CAS  Google Scholar 

  26. Singh, S., & Shalini, R. (2016). Effect of hurdle technology in food preservation: a review. Critical Reviews in Food Science and Nutrition, 56(4), 641–649.

    Article  CAS  Google Scholar 

  27. Bell, C. E. (2005). Structure and mechanism of Escherichia coli RecA ATPase. Molecular Microbiology, 58(2), 358–366.

    Article  CAS  Google Scholar 

  28. Lushchak, V. I. (2011). Toxicology & pharmacology : CBP, 153, 175–190.

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31801565), the National Key Research and Development Program of China (2017YFD0400300), and the Natural Science Foundation of Jiangsu Province (CN) (BK20180910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, S., Liu, W. et al. Potential Application and Bactericidal Mechanism of Lactic Acid–Hydrogen Peroxide Consortium. Appl Biochem Biotechnol 189, 822–833 (2019). https://doi.org/10.1007/s12010-019-03031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03031-z

Keywords

Navigation