Skip to main content

Advertisement

Log in

Amino Acids as Additives against Amorphous Aggregation: In Vitro and In Silico Study on Human Lysozyme

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of 16 amino acids (AA) with various physicochemical properties was investigated on human lysozyme (HL) heat-induced amorphous aggregation. UV-Visible spectrophotometry was used to monitor the kinetics of aggregation in the absence and presence of AA, and transmission electron microscopy (TEM) images were taken from the aggregates. To conduct in silico experiments, Autodock vina was used for docking of AA into protein (via YASARA interface), and FTmap information was checked for an insight onto putative binding sites. Prediction of aggregation-prone regions of lysozyme was made by AGGRESCAN and Tango. Among all tested AA, phenylalanine had the best anti-aggregation effect, followed by lysine. In addition, based on in silico tests, Trp 109 and Val 110 of lysozyme are suggested to be of importance in the aggregation process of the enzyme. In conclusion, phenylalanine, arginine, and lysine were found to affect the nucleation phase of lysozyme aggregation and could be considered as suitable stabilizing structures for this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Hussein, A., & Gieseler, H. (2013). Investigation of histidine stabilizing effects on LDH during freeze-drying. Journal of Pharmaceutical Sciences, 102(3), 813–826.

    Article  CAS  PubMed  Google Scholar 

  2. Alavi, P., Yousefi, R., Amirghofran, S., Karbalaei-Heidari, H. R., & Moosavi-Movahedi, A. A. (2013). Structural analysis and aggregation propensity of reduced and nonreduced glycated insulin adducts. Applied Biochemistry and Biotechnology, 170(3), 623–638.

    Article  CAS  PubMed  Google Scholar 

  3. Arakawa, T., Tsumoto, K., Kita, Y., Chang, B., & Ejima, D. (2007). Biotechnology applications of amino acids in protein purification and formulations. Amino Acids, 33(4), 587–605.

    Article  CAS  PubMed  Google Scholar 

  4. Behbahani, M., Nosrati, M., & Mohabatkar, H. (2018). Inhibition of human immunodeficiency type 1 virus (HIV-1) life cycle by different egg white lysozymes. Applied Biochemistry and Biotechnology, 185(3), 786–798.

    Article  CAS  PubMed  Google Scholar 

  5. Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 8(1), 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamada, H., Arakawa, T., & Shiraki, K. (2009). Effect of additives on protein aggregation. Current Pharmaceutical Biotechnology, 10(4), 400–407.

    Article  CAS  PubMed  Google Scholar 

  7. Hong, T., Iwashita, K., Handa, A., & Shiraki, K. (2017). Arginine prevents thermal aggregation of hen egg white proteins. Food Research International, 97, 272–279.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, P., Shi, J., Sun, Q., Dong, X., & Zhang, N. (2018). Engineering Pichia pastoris for efficient production of a novel bifunctional Strongylocentrotus purpuratus invertebrate-type lysozyme. Applied Biochemistry and Biotechnology, 186(2), 459–475.

    Article  CAS  PubMed  Google Scholar 

  9. Humphrey, B. D., Huang, N., & Klasing, K. C. (2002). Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks. The Journal of Nutrition, 132(6), 1214–1218.

    Article  CAS  PubMed  Google Scholar 

  10. Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krieger, E., & Vriend, G. (2014). YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics, 30(20), 2981–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee-Huang, S., Huang, P. L., Sun, Y., Huang, P. L., Kung, H.-f., Blithe, D. L., & Chen, H.-C. (1999). Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin. Proceedings of the National Academy of Sciences, 96(6), 2678–2681.

    Article  CAS  Google Scholar 

  13. Meng-Lund, H., Friis, N., van de Weert, M., Rantanen, J., Poso, A., Grohganz, H., & Jorgensen, L. (2017). Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme. International Journal of Pharmaceutics, 523(1), 238–245.

    Article  CAS  PubMed  Google Scholar 

  14. Moghadam, T. T., & Ranjbar, B. (2015). Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme. Talanta, 144, 778–787.

    Article  CAS  Google Scholar 

  15. Paik, S. H., Kim, Y. J., Han, S. K., Kim, J. M., Huh, J. W., & Park, Y. I. (2012). Mixture of three amino acids as stabilizers replacing albumin in lyophilization of new third generation recombinant factor VIII GreenGene F. Biotechnology Progress, 28(6), 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  16. Pepys, M., Hawkins, P., Booth, D., Vigushin, D., Tennent, G., Soutar, A., Totty, N., Nguyen, O., Blake, C., & Terry, C. (1993). Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362(6420), 553–557.

    Article  CAS  PubMed  Google Scholar 

  17. Qureshi, H. Y., Li, T., MacDonald, R., Cho, C. M., Leclerc, N., & Paudel, H. K. (2013). Interaction of 14-3-3ζ with microtubule-associated protein tau within alzheimer’s disease neurofibrillary tangles. Biochemistry, 52(37), 6445–6455.

    Article  CAS  PubMed  Google Scholar 

  18. Shiraki, K., Kudou, M., Fujiwara, S., Imanaka, T., & Takagi, M. (2002). Biophysical effect of amino acids on the prevention of protein aggregation. The Journal of Biochemistry, 132(4), 591–595.

    Article  CAS  PubMed  Google Scholar 

  19. Tomita, S., Yoshikawa, H., & Shiraki, K. (2011). Arginine controls heat-induced cluster–cluster aggregation of lysozyme at around the isoelectric point. Biopolymers, 95(10), 695–701.

    Article  CAS  PubMed  Google Scholar 

  20. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsolis, A. C., Papandreou, N. C., Iconomidou, V. A., & Hamodrakas, S. J. (2013). A consensus method for the prediction of ‘aggregation-prone’peptides in globular proteins. PLoS One, 8(1), e54175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vázquez-Rey, M., & Lang, D. A. (2011). Aggregates in monoclonal antibody manufacturing processes. Biotechnology and Bioengineering, 108(7), 1494–1508.

    Article  CAS  PubMed  Google Scholar 

  23. Vetri, V., Canale, C., Relini, A., Librizzi, F., Militello, V., Gliozzi, A., & Leone, M. (2007). Amyloid fibrils formation and amorphous aggregation in concanavalin A. Biophysical Chemistry, 125(1), 184–190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Latifeh Navidpour or Azadeh Ebrahim-Habibi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. Experiments were done in vitro with purchased recombinant enzyme.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadati-Eskandari, N., Navidpour, L., Yaghmaei, P. et al. Amino Acids as Additives against Amorphous Aggregation: In Vitro and In Silico Study on Human Lysozyme. Appl Biochem Biotechnol 189, 305–317 (2019). https://doi.org/10.1007/s12010-019-03010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03010-4

Keywords

Navigation