Skip to main content
Log in

Chemical Cell Lysis System Applicable to Lab-on-a-Disc

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang, M., Wang, G., Kong, S.-K., & Ho, H.-P. (2016). A review of biomedical centrifugal microfluidic platforms. Micromachines, 7, 26.

    Article  Google Scholar 

  2. Robert, B., Letizia, A., & Anja, B. (2016). Detection methods for centrifugal microfluidic platforms. Biosensors & Bioelectronics, 76, 54–67.

    Article  Google Scholar 

  3. Kim, J. K., Johnson, M., Hill, P., & Gale, B. K. (2009). Microfluidic sample preparation: cell lysis and nucleic acid purification. Integrative Biology, 1, 574–586.

    Article  CAS  Google Scholar 

  4. Agrawal, S., Morarka, A., Bodas, D., & Paknikar, K. M. (2012). Multiplexed detection of waterborne pathogens in circular microfluidics. Applied Biochemistry and Biotechnology, 167, 1668–1677.

    Article  CAS  Google Scholar 

  5. Moghimi, H., Moradi, A., Hamedi, J., & Basiri, M. (2016). Development of a loop-mediated isothermal amplification assay for rapid and specific identification of ACT producing Alternaria alternata, the agent of brown spot disease in tangerine. Applied Biochemistry and Biotechnology, 178, 1207–1219.

    Article  CAS  Google Scholar 

  6. Hwang, B. H., Lee, J. W., & Cha, H. J. (2010). Polymerase chain reaction-based detection of total and specific vibrio species. Applied Biochemistry and Biotechnology, 162, 1187–1194.

    Article  CAS  Google Scholar 

  7. Nan, L., Jianga, Z., & Wei, X. (2014). Emerging microfluidic devices for cell lysis: a review. Lab on a Chip. Lab Chip., 14, 1060–1073.

    Article  CAS  Google Scholar 

  8. Siegrist, J., Gorkin, R., Bastien, M., Stewart, G., Peytavi, R., Kido, H., Bergeron, M., & Madou, M. (2010). Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab on a Chip, 10, 363–371.

    Article  CAS  Google Scholar 

  9. Kim, J. T., Jang, S. H., Jia, G. Y., Zoval, J. V., Da Silva, N. A., & Madou, M. J. (2004). Cell lysis on a microfluidic CD (compact disc). LabChip, 4, 516–522.

    CAS  Google Scholar 

  10. Lam, B., Fang, Z., Sargent, E. H., & Kelly, S. O. (2012). Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Analytical Chemistry, 84, 21–25.

    Article  CAS  Google Scholar 

  11. Padilla, E., González, V., Manterola, J. M., Lonca, J., Pérez, A., Matas, L., Quesada, M. D., & Ausina, V. (2003). Evaluation of two different cell lysis methods for releasing mycobacterial nucleic acids in the INNO-LiPA mycobacteria test, diagnostic microbiology and infectious disease. Diagnostic Microbiology and Infectious Disease, 46, 19–23.

    Article  CAS  Google Scholar 

  12. Kim, T. H., Park, J. H., Kim, C. J., & Cho, Y. K. (2014). Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry, 86(8), 3841–3848.

    Article  CAS  Google Scholar 

  13. Privorotskaya, N., Liu, Y. S., Lee, J., Zeng, H., Carlisle, J. A., Radadia, A., Millet, L., Bashir, R., & King, W. P. (2010). Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. Lab on a Chip, 10, 1135–1141.

    Article  CAS  Google Scholar 

  14. Omiatek, D. M., Santillo, M. F., Heien, M. L., & Ewing, A. G. (2009). Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Analytical Chemistry, 81, 2294–2302.

    Article  CAS  Google Scholar 

  15. Choi, M. S., & Yoo, J. C. (2015). Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect. Applied Biochemistry and Biotechnology, 175, 3778–3787.

    Article  CAS  Google Scholar 

  16. Kim, J. S., Jahng, M. S., Lee, G. G., Lee, K. J., Chae, H. K., Lee, J. H., Lee, J. H., & Kim, M. H. (2011). Rapid and simple detection of the invA gene in Salmonella spp. by isothermal target and probe amplification (iTPA). Letters in Applied Microbiology, 52, 399–405.

    Article  CAS  Google Scholar 

  17. Nakajima, H., Itoh, K. I., Arakawa, E., Inoue, M., Mori, T., & Watanabe, H. (1994). Degradation of a polymerase chain reaction (PCR) product by heat-stable deoxyribonuclease (DNase) produced from Yersinia enterocolitica. Microbiology and Immunology, 38, 153–156.

    Article  CAS  Google Scholar 

  18. Zhou, Q. J., Wang, L., Chen, J., Wang, R. N., Shi, Y. H., Li, C. H., Zhang, D. M., Yan, X. J., & Zhang, Y. J. (2014). Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104, 26–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors acknowledge Mathpower Co., Ltd., Korea, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Chern Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, D., Yoo, J.C. Chemical Cell Lysis System Applicable to Lab-on-a-Disc. Appl Biochem Biotechnol 183, 20–29 (2017). https://doi.org/10.1007/s12010-017-2428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2428-1

Keywords

Navigation