Skip to main content

Advertisement

Log in

Physical Pretreatment Methods for Improving Microalgae Anaerobic Biodegradability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae may be a potential feedstock for biogas production through anaerobic digestion. However, this process is limited by the hydrolytic stage, due to the complex and resistant microalgae cell wall components. This fact hinders biomass conversion into biogas, demanding the application of pretreatment techniques for inducing cell damage and/or lysis and organic matter solubilisation. In this study, sonication, thermal, ultrasound, homogeneizer, hydrothermal and steam explosion pretreatments were evaluated in different conditions for comparing their effects on anaerobic digestion performance in batch reactors. The results showed that the highest biomass solubilisation values were reached for steam explosion (65–73%) and ultrasound (33–57%). In fact, only applied energies higher than 220 W or temperatures higher than 80 °C induced cell wall lysis in C. sorokiniana. Nonetheless, the highest methane yields were not correlated to biogas production. Thermal hydrolysis and steam explosion showed lower methane yields in respect to non-pretreated biomass, suggesting the presence of toxic compounds that inhibited the biological process. Accordingly, these pretreatment techniques led to a negative energy balance. The best pretreatment method among the ones evaluated was thermal pretreatment, with four times more energy produced that demanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(3), 205–218. https://doi.org/10.1002/bbb.

    Article  Google Scholar 

  2. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. https://doi.org/10.1002/bbb.

    Article  Google Scholar 

  3. Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In W. J. Lee (Ed.), Advanced biofuels and bioproducts (pp. 873–975). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3348-4_36.

    Chapter  Google Scholar 

  4. Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., & Ferrer, I. (2016). Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresource Technology, 199, 386–397. https://doi.org/10.1016/j.biortech.2015.09.007.

    Article  CAS  Google Scholar 

  5. Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361. https://doi.org/10.1016/j.watres.2014.07.040.

    Article  CAS  Google Scholar 

  6. Hadj-Romdhane, F., Jaouen, P., Pruvost, J., Grizeau, D., Van Vooren, G., & Bourseau, P. (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123, 366–374. https://doi.org/10.1016/j.biortech.2012.07.085.

    Article  CAS  Google Scholar 

  7. De Oliveira, M. A. C. L., Monteiro, M. P. C., Robbs, P. G., & Leite, S. G. F. (1999). Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 7(4), 261–275. https://doi.org/10.1023/A:1009233230706.

    Article  Google Scholar 

  8. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource Technology, 110, 610–616. https://doi.org/10.1016/j.biortech.2012.01.043.

    Article  Google Scholar 

  9. Cho, S., Park, S., Seon, J., Yu, J., & Lee, T. (2013). Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresource Technology, 143, 330–336. https://doi.org/10.1016/j.biortech.2013.06.017.

    Article  CAS  Google Scholar 

  10. Passos, F., Carretero, J., & Ferrer, I. (2015). Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chemical Engineering Journal, 279, 667–672. https://doi.org/10.1016/j.cej.2015.05.065.

    Article  CAS  Google Scholar 

  11. Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H., & Oka, S. (2004). A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol Cult Coll, 20(2), 53–59 Retrieved from http://www.jscc-home.jp/journal/No20_2/No20_2_53.pdf.

    Google Scholar 

  12. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., et al. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040.

    Article  CAS  Google Scholar 

  13. Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614. https://doi.org/10.1016/j.cej.2010.03.082.

    Article  CAS  Google Scholar 

  14. Passos, F., García, J., & Ferrer, I. (2013). Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresource Technology, 138, 79–86. https://doi.org/10.1016/j.biortech.2013.03.114.

    Article  CAS  Google Scholar 

  15. Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance: How to choose and construct models for the life sciences. Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. doi:https://doi.org/10.1017/CBO9780511611377.

  16. APHA-AWWA-WPCF. (1999). Standard Methods for the Examination of Water and Wastewater. (20th ed.)Washington.

  17. Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., & Pontalier, P. Y. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25(2), 523–529. https://doi.org/10.1007/s10811-012-9886-1.

    Article  CAS  Google Scholar 

  18. Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14875032.

  19. Passos, F., Solé, M., García, J., & Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Applied Energy, 108, 168–175. https://doi.org/10.1016/j.apenergy.2013.02.042.

    Article  CAS  Google Scholar 

  20. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027.

    Article  CAS  Google Scholar 

  21. Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014). Pretreatment of microalgae to improve biogas production: a review. Bioresource Technology, 172, 403–412. https://doi.org/10.1016/j.biortech.2014.08.114.

    Article  CAS  Google Scholar 

  22. Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779. https://doi.org/10.1016/j.fuproc.2015.06.027.

    Article  CAS  Google Scholar 

  23. Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75(September), 692–709. https://doi.org/10.1016/j.rser.2016.11.045.

    Article  CAS  Google Scholar 

Download references

Funding

The authors want to thank Pontificie Universidad Católica de Valparaiso for the financial support. Olivia Córdova appreciates her scholarship funded by the CONICYT, Beca Nacional Doctorado. 21121012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Córdova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, O., Passos, F. & Chamy, R. Physical Pretreatment Methods for Improving Microalgae Anaerobic Biodegradability. Appl Biochem Biotechnol 185, 114–126 (2018). https://doi.org/10.1007/s12010-017-2646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2646-6

Keywords

Navigation