Skip to main content
Log in

Discovery of Potent Neuraminidase Inhibitors Using a Combination of Pharmacophore-Based Virtual Screening and Molecular Simulation Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Neuraminidase (NA), a surface protein, facilitates the release of nascent virus and thus spreads infection. It has been renowned as a potential drug target for influenza A virus infection. The drugs such as oseltamivir, zanamivir, peramivir, and laninamivir are approved for the treatment of influenza infection. Additionally, investigational drugs namely MK2206, tamiphosphor, crenatoside, and dehydroepiandrosterone (DHEA) are also available for the treatment. However, recent outbreaks of highly pathogenic and drug-resistant influenza A strains highlighted the need to discover novel NA inhibitor. Keeping this in mind, in the current investigation, an effort was made to ascertain potent inhibitors using pharmacophore-based virtual screening and docking approach. A 3D pharmacophore model was generated based on the chemical features of approved and investigational NA inhibitors using PHASE module of Schrödinger suite. The model consists of two hydrogen bond acceptors (A), one hydrogen bond donor (D), and one positively charged group (P), AADP. Subsequently, molecules with same pharmacophoric features were screened from among the two million compounds available in the ZINC database using the generated pharmacophore hypothesis. Ligand filtration was also done to obtain an efficient collection of hit molecules by employing Lipinski “rule of five” using Qikprop module. Finally, the screened molecule was subjected to docking and molecular dynamic simulations to examine the inhibiting activity of the compounds. The results of our analysis suggest that “acebutolol hydrochloride” (156792) could be the promising candidates for the treatment of influenza A virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, X. B., Wang, S. Q., Xu, W. R., Wang, R. L., & Chou, K. C. (2011). Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 6, e28111.

    Article  CAS  Google Scholar 

  2. Mukhtar, M. M., Rasool, S. T., Song, D., Zhu, C., Hao, Q., & Zhu, Y. (2007). Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. Journal of General Virology, 88, 3094–3099.

    Article  CAS  Google Scholar 

  3. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H. (2004). Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. Journal of Virology, 78, 12665–12667.

    Article  CAS  Google Scholar 

  4. Su, Y., Yang, H. Y., Zhang, B. J., Jia, H. L., & Tien, P. (2008). Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Archives of Virology, 153, 2253–2261.

    Article  CAS  Google Scholar 

  5. Chan, M. C., Cheung, C. Y., Chui, W. H., Tsao, S. W., Nicholls, J. M., Chan, Y. O., Chan, R. W., Long, H. T., Poon, L. L., Guan, Y., & Peiris, J. S. (2005). Pro-inflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respiratory Research, 6, 135.

    Article  CAS  Google Scholar 

  6. Bauer, K., Richter, M., Wutzler, P., & Schmidtke, M. (2009). Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/06. Antiviral Research, 82, 34–41.

    Article  CAS  Google Scholar 

  7. Hurt, A. C., Holien, J. K., Parker, M., & Barr, I. G. (2009). Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs, 69, 2523–2531.

    Article  CAS  Google Scholar 

  8. Shobugawa, Y., Saito, R., Sato, I., Kawashima, T., Dapat, C., Dapat, I. C., Kondo, H., Suzuki, Y., Saito, K., & Suzuki, H. (2012). Clinical effectiveness of neuraminidase inhibitor—oseltamivir, zanamivir, laninamivir, and peramivir—for treatment of influenza A(H3N2) and A(H1N1) pdm09 infection: an observational study in the 2010-2011 influenza season in Japan. Journal of Infection and Chemotherapy, 18, 858–864.

    Article  CAS  Google Scholar 

  9. Pizzorno, A., Abed, Y., Plante, P. L., Carbonneau, J., Baz, M., Hamelin, M. E., Corbeil, J., & Boivin, G. (2014). Evolution of oseltamivir resistance mutations in influenza A(H1N1) and A(H3N2) viruses during selection in experimentally infected mice. Antimicrobial Agents and Chemotherapy, 58, 6398–6405.

    Article  Google Scholar 

  10. Wu, N. C., Young, A. P., Dandekar, S., Wijersuriya, H., Al-Mawsawi, L. Q., Wu, T. T., & Sun, R. (2013). Systematic identification of H274Y compensatory mutations in influenza a virus neuraminidase by high-throughput screening. Journal of Virology, 87, 1193–1199.

    Article  CAS  Google Scholar 

  11. Yen, H. L., McKimm-Breschkin, J. L., Choy, K. T., Wong, D. D. Y., Cheung, P. P. H., Zhou, J., Ng, I. H., Zhu, H., Webby, R. J., Guan, Y., Webster, R. G., & Peirisa, J. S. M. (2013). Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio, 4, e00396–e00313.

    Article  Google Scholar 

  12. McKimm-Breschkin. (2012). Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 7, 25–36.

    Article  Google Scholar 

  13. Escuret, V., Collins, P. J., Casalegno, J. S., Vachieri, S. G., Cattle, N., Ferraris, O., Sabatier, M., Frobert, E., Caro, V., Skehel, J. J., Gamblin, S., Valla, F., Valette, M., Ottmann, M., McCauley, J. W., Daniels, R. S., & Lina, B. (2014). A novel I221L substitution in neuraminidase confers high-level resistance to oseltamivir in influenza B viruses. The Journal of Infectious Diseases, 210, 1260–1269.

    Article  CAS  Google Scholar 

  14. LeGoff, J., Rousset, D., Abou-Jaoudé, G., Scemla, A., Ribaud, P., Mercier-Delarue, S., Caro, V., Enouf, V., Simon, F., Molina, J., & van der Werf, S. (2012). I223R mutation in influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to oseltamivir and Zanamivir and enhanced resistance with H275Y. PLoS One, 7, e37095.

    Article  CAS  Google Scholar 

  15. Shanthi, V., Ramanathan, K., & Sethumadhavan, R. (2010). Exploring the role of C-H....pi interactions on the structural stability of single chain “all-alpha” proteins. Applied Biochemistry and Biotechnology, 160, 1473–1483.

    Article  CAS  Google Scholar 

  16. Karthick, V., Shanthi, V., Rajasekaran, R., & Ramanathan, K. (2012). Exploring the cause of oseltamivir resistance against mutant H274Y neuraminidase by molecular simulation approach. Applied Biochemistry and Biotechnology, 167, 237–249.

    Article  CAS  Google Scholar 

  17. Preethi, B., Shanthi, V., & Ramanathan, K. (2015). Investigation of nalidixic acid resistance mechanism in Salmonella enterica using molecular simulation techniques. Applied Biochemistry and Biotechnology, 177, 528–540.

    Article  CAS  Google Scholar 

  18. Kumar, A., Shanthi, V., & Ramanathan, K. (2016). Discovery of potential ALK inhibitors by virtual screening approach. 3 Biotech, 6, 21.

    Article  Google Scholar 

  19. Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432, 862–865.

    Article  CAS  Google Scholar 

  20. Karthick, V., Ramanathan, K., Shanthi, V., & Rajasekaran, R. (2013). Identification of potential inhibitors of H5N1 influenza A virus neuraminidase by ligand-based virtual screening approach. Cell Biochemistry and Biophysics, 66, 657–669.

    Article  CAS  Google Scholar 

  21. Shahlaei, M., & Doosti, E. (2016). Virtual screening based on pharmacophore model followed by docking simulation studies in search of potential inhibitors for p38 map kinase. Biomedicine & Pharmacotherapy, 80, 352–372.

    Article  CAS  Google Scholar 

  22. Kumar, S. P., & Jha, P. C. (2016). Multi-level structure-based pharmacophore 20ruids20g of caspase-3-non-peptide complexes: extracting essential pharmacophore features and its application to virtual screening. Chemico-Biological Interactions, 254, 207–220.

    Article  CAS  Google Scholar 

  23. Tseng, T. S., Chuang, S. M., Hsiao, N. W., Chen, Y. W., Lee, Y. C., Lin, C. C., Huang, C., & Tsai, K. C. (2016). Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations. Molecular BioSystems, 12, 2541–2551.

    Article  CAS  Google Scholar 

  24. Khanfar, M. A., Al-Qtaishat, S., Habash, M., & Taha, M. O. (2016). Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Chemico-Biological Interactions, 254, 93–101.

    Article  CAS  Google Scholar 

  25. Ronca, R., Giacomini, A., Di Salle, E., Coltrini, D., Pagano, K., Ragona, L., Matarazzo, S., Rezzola, S., Maiolo, D., Torrella, R., Moroni, E., Mazzieri, R., Escobar, G., Mor, M., Colombo, G., & Presta, M. (2015). Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell, 28, 225–239.

    Article  CAS  Google Scholar 

  26. Bhadauriya, A., Dhoke, G. V., Gangwal, R. P., Damre, M. V., & Sangamwar, A. T. (2013). Identification of dual acetyl-CoA carboxylases 1 and 2 inhibitors by pharmacophore based virtual screening and molecular docking approach. Molecular Diversity, 17, 139–149.

    Article  CAS  Google Scholar 

  27. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Weissig, H. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  Google Scholar 

  28. Vavricka, C. J., Li, Q., Wu, Y., Qi, J., Wang, M., Liu, Y., Gao, F., Liu, J., Feng, E., He, J., Wang, J., Liu, H., Jiang, H., & Gao, G. F. (2011). Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathogens, 7, e1002249.

    Article  CAS  Google Scholar 

  29. Irwin, J. J., & Shoichet, B. K. (2005). ZINC—a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.

    Article  CAS  Google Scholar 

  30. Chang, C. K., Jeyachandran, S., Hu, N. J., Liu, C. L., Lin, S. Y., Wang, Y. S., Chang, Y. M., & Hou, M. H. (2016). Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human corona virus nucleocapsid protein. Molecular BioSystems, 12, 59–66.

    Article  CAS  Google Scholar 

  31. Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chemical Biology & Drug Design, 67, 370–372.

    Article  CAS  Google Scholar 

  32. Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44, 235–249.

    Article  CAS  Google Scholar 

  33. Huang, Q., Li, L. L., & Yang, S. Y. (2010). PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. Journal of Molecular Graphics & Modelling, 28, 775–787.

    Article  CAS  Google Scholar 

  34. Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., & Shelley, J. C. (2010). ConfGen: a conformational search method for efficient generation of bioactive conformers. Journal of Chemical Information and Modeling, 50, 534–546.

    Article  CAS  Google Scholar 

  35. Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR model development and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20, 647–671.

    Article  CAS  Google Scholar 

  36. Bharatham, K., Bharatham, N., & Lee, K. W. (2007). Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors. Archives of Pharmacal Research, 30, 533–542.

    Article  CAS  Google Scholar 

  37. Rajamanikandan, S., & Srinivasan, P. (2016). Pharmacophore modeling and structure-based virtual screening to identify potent inhibitors targeting LuxP of Vibrio harveyi. Journal of Receptor and Signal Transduction Research, 6, 1–16.

    Google Scholar 

  38. Singh, A. A., Sivakumar, D., & Somvanshi, P. (2011). Cataloguing functionally relevant polymorphisms in gene DNA ligase I: a computational approach. 3 Biotech, 1, 47.

    Article  Google Scholar 

  39. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234.

    Article  Google Scholar 

  40. Ekhteiari Salmas, R., Unlu, A., Bektaş, M., Yurtsever, M., Mestanoglu, M., & Durdagi, S. (2016). Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. Journal of Biomolecular Structure & Dynamics, 17, 1–17.

    Article  Google Scholar 

  41. Tikhonova, I. G., Sum, C. S., Neumann, S., Engel, S., Raaka, B. M., Costanzi, S., & Gershengorn, M. C. (2008). Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. Journal of Medicinal Chemistry, 51, 625–633.

    Article  CAS  Google Scholar 

  42. Muralidharan, A. R., Selvaraj, C., Singh, S., Nelson Jesudasan, C. A., Geraldine, P., & Thomas, P. (2014). Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Medicinal Chemistry Research, 23, 2445–2455.

    Article  CAS  Google Scholar 

  43. Nair, S. B., Fayaz, S. M., & Krishnamurthy, R. G. (2012). In silico prediction of novel inhibitors of the DNA binding activity of FoxG1. Medicinal Chemistry, 8, 1155–1162.

    CAS  Google Scholar 

  44. Ramatenki, V., Dumpati, R., Vadija, R., Vellanki, S., Potlapally, S. R., Rondla, R., & Vuruputuri, U. (2017). Identification of new lead molecules against UBE2NL enzyme for cancer therapy. Applied Biochemistry and Biotechnology, 182, 1497–1517.

    Article  CAS  Google Scholar 

  45. Ramezani, F., Amanlou, M., & Rafii-Tabar, H. (2014). Gold nanoparticle shape effects on human serum albumin corona interface: a molecular dynamic study. Journal of Nanoparticle Research, 16, 2512.

    Article  Google Scholar 

  46. Schuttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica, 60, 1355–1363.

    Google Scholar 

  47. Karthick, V., Shanthi, V., Rajasekaran, R., & Ramanathan, K. (2013). In silico analysis of drug-resistant mutant of neuraminidase (N294S) against oseltamivir. Protoplasma, 250, 197–207.

    Article  CAS  Google Scholar 

  48. Yang, S. Y. (2010). Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discovery Today, 15, 444–450.

    Article  CAS  Google Scholar 

  49. Gubareva, L. V., Robinson, M. J., Bethell, R. C., & Webster, R. G. (1997). Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. Journal of Virology, 71, 3385–3390.

    CAS  Google Scholar 

  50. Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1, 337–341.

    Article  CAS  Google Scholar 

  51. Kalani, K., Yadav, D. K., Khan, F., Srivastava, S. K., & Suri, N. (2012). Pharmacophore, QSAR, and ADME based semi-synthesis and in vitro evaluation of ursolic acid analogsfor anticancer activity. Journal of Molecular Modeling, 18, 3389–3413.

    Article  CAS  Google Scholar 

  52. Gaddaguti, V., Venkateswara Rao, T., & Prasada Rao, A. (2016). Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles Gambiae. 3 Biotech, 6, 26.

    Article  Google Scholar 

  53. Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13, 1518–1524.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank VIT University for providing “VIT SEED GRANT” for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthi V.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K, R., V, S. Discovery of Potent Neuraminidase Inhibitors Using a Combination of Pharmacophore-Based Virtual Screening and Molecular Simulation Approach. Appl Biochem Biotechnol 184, 1421–1440 (2018). https://doi.org/10.1007/s12010-017-2625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2625-y

Keywords

Navigation