Skip to main content

Advertisement

Log in

Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuijlen, J. M., Bremer, E., Mooij, J. J., den Dunnen, W. F., & Helfrich, W. (2010). Review: on TRAIL for malignant glioma therapy? Neuropathology and Applied Neurobiology, 36, 168–182.

    Article  CAS  Google Scholar 

  2. Karpel-Massler, G., Schmidt, U., Unterberg, A., & Halatsch, M. E. (2009). Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Molecular cancer research: MCR, 7, 1000–1012.

    Article  CAS  Google Scholar 

  3. Narayana, A., Kelly, P., Golfinos, J., Parker, E., Johnson, G., Knopp, E., et al. (2009). Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. Journal of Neurosurgery, 110, 173–180.

    Article  Google Scholar 

  4. Iacob, G., & Dinca, E. B. (2009). Current data and strategy in glioblastoma multiforme. Journal of Medicine and Life, 2, 386–393.

    Google Scholar 

  5. Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signalling. Cellular Signalling, 11, 1–14.

    Article  CAS  Google Scholar 

  6. Halliwell, B. (2011). Free radicals and antioxidants—quo vadis? Trends in Pharmacological Sciences, 32, 125–130.

    Article  CAS  Google Scholar 

  7. Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in bioscience: a journal and virtual library, 10, 1881–1896.

    Article  CAS  Google Scholar 

  8. Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug discovery, 8, 579–591.

    Article  CAS  Google Scholar 

  9. Prados, M. D., & Levin, V. (2000). Biology and treatment of malignant glioma. Seminars in Oncology, 27, 1–10.

    CAS  Google Scholar 

  10. Liu, B., Tan, X. Y., Liang, J., Wu, S. X., Liu, J., Zhang, Q. Y., et al. (2015). A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep-Uk, 4, 7041.

    Article  Google Scholar 

  11. Dutot, M., Fagon, R., Hemon, M., & Rat, P. (2012). Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Applied Biochemistry and Biotechnology, 167, 2234–2240.

    Article  CAS  Google Scholar 

  12. Horie, Y., Nemoto, H., Itoh, M., Kosaka, H., & Morita, K. (2016). Fermented brown rice extract causes apoptotic death of human acute lymphoblastic leukemia cells via death receptor pathway. Applied Biochemistry and Biotechnology, 178, 1599–1611.

    Article  CAS  Google Scholar 

  13. Jha, M., Aggarwal, R., Jha, A. K., & Shrivastava, A. (2015). Natural compounds: DNA methyltransferase inhibitors in oral squamous cell carcinoma. Applied Biochemistry and Biotechnology, 177, 577–594.

    Article  CAS  Google Scholar 

  14. Suryakumar, G., & Gupta, A. (2011). Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). Journal of Ethnopharmacology, 138, 268–278.

    Article  Google Scholar 

  15. Zheng, X., Long, W., Liu, G., Zhang, X., & Yang, X. (2012). Effect of seabuckthorn (Hippophae rhamnoides ssp. sinensis) leaf extract on the swimming endurance and exhaustive exercise-induced oxidative stress of rats. Journal of the Science of Food and Agriculture, 92, 736–742.

    Article  CAS  Google Scholar 

  16. Pintea, A., Marpeau, A., Faye, M., Socaciu, C., & Gleizes, M. (2001). Polar lipid and fatty acid distribution in carotenolipoprotein complexes extracted from sea buckthorn fruits. Phytochemical analysis: PCA, 12, 293–298.

    Article  CAS  Google Scholar 

  17. Yang, B., & Kallio, H. P. (2001). Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. Journal of Agricultural and Food Chemistry, 49, 1939–1947.

    Article  CAS  Google Scholar 

  18. Guo, R., Guo, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buckthorn (Hippophae rhamnoides L.) berries. Food Chemistry, 221, 997–1003.

    Article  CAS  Google Scholar 

  19. Kuduban, O., Mazlumoglu, M. R., Kuduban, S. D., Erhan, E., Cetin, N., Kukula, O., et al. (2016). The effect of Hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate. Journal of applied oral science: revista FOB, 24, 423–430.

    Article  Google Scholar 

  20. Ganju, L., Padwad, Y., Singh, R., Karan, D., Chanda, S., Chopra, M. K., et al. (2005). Anti-inflammatory activity of seabuckthorn (Hippophae rhamnoides) leaves. International Immunopharmacology, 5, 1675–1684.

    Article  CAS  Google Scholar 

  21. Geetha, S., Sai Ram, M., Singh, V., Ilavazhagan, G., & Sawhney, R. C. (2002). Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)—an in vitro study. Journal of Ethnopharmacology, 79, 373–378.

    Article  CAS  Google Scholar 

  22. Hibasami, H., Mitani, A., Katsuzaki, H., Imai, K., Yoshioka, K., & Komiya, T. (2005). Isolation of five types of flavonol from seabuckthorn (Hippophae rhamnoides) and induction of apoptosis by some of the flavonols in human promyelotic leukemia HL-60 cells. International Journal of Molecular Medicine, 15, 805–809.

    CAS  Google Scholar 

  23. Yasukawa, K., Kitanaka, S., Kawata, K., & Goto, K. (2009). Anti-tumor promoters phenolics and triterpenoid from Hippophae rhamnoides. Fitoterapia, 80, 164–167.

    Article  CAS  Google Scholar 

  24. Upadhyay, N. K., Kumar, M. S., & Gupta, A. (2010). Antioxidant, cytoprotective and antibacterial effects of sea buckthorn (Hippophae rhamnoides L.) leaves. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48, 3443–3448.

    Article  CAS  Google Scholar 

  25. Grobben, B., De Deyn, P. P., & Slegers, H. (2002). Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell and Tissue Research, 310, 257–270.

    Article  CAS  Google Scholar 

  26. Kim, I. S., Yang, M. R., Lee, O. H., & Kang, S. N. (2011). Antioxidant activities of hot water extracts from various spices. International Journal of Molecular Sciences, 12, 4120–4131.

    Article  CAS  Google Scholar 

  27. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675.

    Article  CAS  Google Scholar 

  28. Price, M. L., Vanscoyoc, S., & Butler, L. G. (1978). Critical evaluation of vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26, 1214–1218.

    Article  CAS  Google Scholar 

  29. Hong, M., Song, K. D., Lee, H. K., Yi, S., Lee, Y. S., Heo, T. H., et al. (2016). Fibrates inhibit the apoptosis of batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential. In Vitro Cellular & Developmental Biology. Animal, 52, 349–355.

    Article  CAS  Google Scholar 

  30. Jun, H. S., Weinstein, D. A., Lee, Y. M., Mansfield, B. C., & Chou, J. Y. (2014). Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood, 123, 2843–2853.

    Article  CAS  Google Scholar 

  31. Kumar, M. S., Dutta, R., Prasad, D., & Misra, K. (2011). Subcritical water extraction of antioxidant compounds from seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry, 127, 1309–1316.

    Article  CAS  Google Scholar 

  32. Grey, C., Widen, C., Adlercreutz, P., Rumpunen, K., & Duan, R. D. (2010). Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chemistry, 120, 1004–1010.

    Article  CAS  Google Scholar 

  33. Upadhyay, N. K., Kumar, R., Mandotra, S. K., Meena, R. N., Siddiqui, M. S., Sawhney, R. C., et al. (2009). Safety and healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47, 1146–1153.

    Article  CAS  Google Scholar 

  34. Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: a versatile source of anticancer drugs. Pharmacognosy Reviews, 5, 1–12.

    Article  CAS  Google Scholar 

  35. Olsson, M. E., Gustavsson, K. E., Andersson, S., Nilsson, A., & Duan, R. D. (2004). Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. Journal of Agricultural and Food Chemistry, 52, 7264–7271.

    Article  CAS  Google Scholar 

  36. Teng, B. S., Lu, Y. H., Wang, Z. T., Tao, X. Y., & Wei, D. Z. (2006). In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacological Research, 54, 186–194.

    Article  CAS  Google Scholar 

  37. Padmavathi, B., Upreti, M., Singh, V., Rao, A. R., Singh, R. P., & Rath, P. C. (2005). Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor. Nutrition and Cancer, 51, 59–67.

    Article  Google Scholar 

  38. Li, G. X., Chen, Y. K., Hou, Z., Xiao, H., Jin, H., Lu, G., et al. (2010). Pro-oxidative activities and dose-response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis, 31, 902–910.

    Article  CAS  Google Scholar 

  39. Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell, 48, 158–167.

    Article  CAS  Google Scholar 

  40. Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research, 51, 794–798.

    CAS  Google Scholar 

  41. Shibuya, N., & Kimura, H. (2013). Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Frontiers in Endocrinology, 4, 87.

    Article  Google Scholar 

  42. Shibuya, N., Koike, S., Tanaka, M., Ishigami-Yuasa, M., Kimura, Y., Ogasawara, Y., et al. (2013). A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nature Communications, 4, 1366.

    Article  Google Scholar 

  43. Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456–1462.

    Article  CAS  Google Scholar 

  44. Wyllie, A. H. (1995). The genetic regulation of apoptosis. Current Opinion in Genetics & Development, 5, 97–104.

    Article  CAS  Google Scholar 

  45. Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 609–619.

    Article  CAS  Google Scholar 

  46. Gajkowska, B., Motyl, T., Olszewska-Badarczuk, H., & Godlewski, M. M. (2001). Expression of BAX in cell nucleus after experimentally induced apoptosis revealed by immunogold and embedment-free electron microscopy. Cell Biology International, 25, 725–733.

    Article  CAS  Google Scholar 

  47. Joy, A., Panicker, S., & Shapiro, J. R. (2000). Altered nuclear localization of bax protein in BCNU-resistant glioma cells. Journal of Neuro-Oncology, 49, 117–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01104601 and Project No. PJ01183401)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Joo Jung or Hyun Sik Jun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Sung-Jo Kim and Eunmi Hwang authors have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Hwang, E., Yi, S.S. et al. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis. Appl Biochem Biotechnol 182, 1663–1674 (2017). https://doi.org/10.1007/s12010-017-2425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2425-4

Keywords

Navigation