Skip to main content

Advertisement

Log in

Natural Compounds: DNA Methyltransferase Inhibitors in Oral Squamous Cell Carcinoma

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is a multistep process which is modulated by several endogenous and environmental factors. Epigenetic changes have been found to be equally responsible for OSCC as genetic changes. A plethora of genes showing hypermethylation have been discovered in OSCC. Since these changes are reversible, a lot of emphasis is on using the natural compounds for their ability to cause demethylation which could lead to reactivation of the inactivated tumor suppressor genes. This review encompasses the promoter hypermethylation of tumor suppressor genes in OSCC and its possible reversal using natural compounds. In addition, new compounds which could be screened for their demethylating ability have also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, B. W., Greim, H., Shuker, D., & Kauppinen, T. (2003). Defence of IARC monographs. Lancet, 361, 13003–13006.

    Google Scholar 

  2. Howlader, N., Noone, A. M., Krapcho, M., et al. (Eds.). (2011). SEER Cancer Statistics Review, 1975–2008. Bethesda: National Cancer Institute, 2011. Also available online. Last accessed 06 Feb 2015.

    Google Scholar 

  3. Gillison, M. L., D’Souza, G., Westra, W., Sugar, E., Xiao, W., Begum, S., & Viscidi, R. (2008). Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16- negative head and neck cancers. J Natl Cancer Inst, 100, 407–420.

    Article  Google Scholar 

  4. Chaturvedi, A. K., Engels, E. A., Anderson, W. F., & Gillison, M. L. (2008). Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. Journal of Clinical Oncology, 26, 612–619.

    Article  Google Scholar 

  5. Lingen, M. W., Pinto, A., Mendes, R. A., Franchini, R., Czerninski, R., Tilakaratne, W. M., Partridge, M., Peterson, D. E., & Woo, S. B. (2011). Genetics/epigenetics of oral premalignancy: current status and future research. Oral Diseases, 17, 7–22.

    Article  Google Scholar 

  6. Saintigny, P., Zhang, L., Fan, Y.-H., El-Naggar, A. K., Papadimitrakopoulou, V. A., Feng, L., Lee, J. J., Kim, E. S., Hong, W. K., & Mao, L. (2011). Gene expression profiling predicts the development of oral cancer. Cancer Prevention Research, 4, 218–229.

    Article  CAS  Google Scholar 

  7. Kyrgidis, A., Tzellos, T. G., & Triaridis, S. (2010). Melanoma: stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. Journal of Carcinogenesis, 9, 1477–3163.

    Article  CAS  Google Scholar 

  8. Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429, 457–463.

    Article  CAS  Google Scholar 

  9. Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Reviews, 7, 21–33.

    Article  CAS  Google Scholar 

  10. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3, 415–428.

    Article  CAS  Google Scholar 

  11. Board, R. E., Knight, L., Greystoke, A., Blackhall, F. H., Hughes, A., Dive, C., & Ranson, M. (2008). DNA methylation in circulating tumour DNA as a biomarker for cancer. Biomarker Insights, 2, 307–319.

    Google Scholar 

  12. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16, 6–21.

    Article  CAS  Google Scholar 

  13. Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America, 99, 3740–3745.

    Article  CAS  Google Scholar 

  14. Illingworth, R. S., & Bird, A. P. (2009). CpG islands—“a rough guide”. FEBS Letters, 583, 1713–1720.

    Article  CAS  Google Scholar 

  15. Wang, Y., & Leung, F. C. (2004). An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics, 20, 1170–1177.

    Article  CAS  Google Scholar 

  16. Worm, S., & Guldberg, P. (2002). DNA methylation: an epigenetic pathway to cancer and a promising target for anticancer therapy. Journal of Oral Pathology & Medicine, 31, 443–449.

    Article  CAS  Google Scholar 

  17. Eden, A., Gaudet, F., Waghmare, A., & Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 300, 455.

    Article  CAS  Google Scholar 

  18. Bonazzi, V. F., Irwin, D., & Hayward, N. K. (2009). Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes, Chromosomes and Cancer, 48, 10–21.

    Article  CAS  Google Scholar 

  19. Feinberg, A. P., Cui, H., & Ohlsson, R. (2002). DNA methylation and genomic imprinting: Insightsfrom cancer into epigenetic mechanisms. Seminars in Cancer Biology, 12, 389–398.

    Article  CAS  Google Scholar 

  20. Robertson, K. D. (2005). DNA methylation and human disease. Nature Reviews Genetics, 6, 597–610.

    Article  CAS  Google Scholar 

  21. Martinez, R., Martin-Subero, J. I., Rohde, V., Kirsch, M., Alaminos, M., Fernandez, A. F., Ropero, S., Schackert, G., & Esteller, M. (2009). A microarray-based DNA methylation study of glioblastomamultiforme. Epigenetics, 4, 255–264.

    Article  CAS  Google Scholar 

  22. Piyathilake, C. J., Bell, W. C., Jones, J., et al. (2005). Pattern of nonspecific (or global) DNA methylation in oral carcinogenesis. Head & Neck, 27, 1061–1067.

    Article  Google Scholar 

  23. Guerrero-Preston, R., Baez, A., Blanco, A., Berdasco, M., Fraga, M., & Esteller, M. (2009). Global DNA methylation: a common early event in oral cancer cases with exposure to environmental carcinogens or viral agents. Puerto Rico Health Sciences Journal, 28, 24–29.

    CAS  Google Scholar 

  24. Baba, S., Yamada, Y., Hatano, Y., et al. (2009). Global DNA hypomethylation suppresses squamous carcinogenesis in the tongue and esophagus. Cancer Science, 100, 1186–1191.

    Article  CAS  Google Scholar 

  25. Gasche, J. A., Hoffmann, J., Boland, C. R., & Goel, A. (2011). Interleukin-6 promotes tumorigenesisby altering DNA methylation in oral cancer cells. International Journal of Cancer, 129, 1053–1063.

    Article  CAS  Google Scholar 

  26. Supic, G., Kozomara, R., Jovic, N., Zeljic, K., & Magic, Z. (2011). Prognostic significance of tumor- related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas. Oral Oncology, 47, 702–708.

    Article  CAS  Google Scholar 

  27. Diez-Perez, R., Campo-Trapero, J., Cano-Sanchez, J., Lopez-Duran, M., Gonzalez-Moles, M. A., Bascones-Ilundain, J., & Bascones-Martinez, A. (2011). Methylation in oral cancer and pre-cancerous lesions (Review). Oncology Reports, 25, 1203–1209.

    CAS  Google Scholar 

  28. Towle, R., & Garnis, C. (2012). Methylation-mediated molecular dysregulation in clinical oral malignancy. Journal of Oncology, 2012, 1–12.

    Article  Google Scholar 

  29. Mascolo, M., Siano, M., Ilardi, G., Russo, D., Merolla, F., Rosa, G. D., & Staibano, S. (2012). Epigenetic disregulation in oral cancer. International Journal of Molecular Sciences, 13, 2331–2353.

    Article  CAS  Google Scholar 

  30. Gasche, J. A., & Goel, A. (2012). Epigenetic mechanisms in oral carcinogenesis. Future Oncology, 8, 1407–1425.

    Article  CAS  Google Scholar 

  31. Huang, M. J., Yeh, K. T., Shih, H. C., Wang, Y. F., Lin, T. H., Chang, J. Y., Shih, M. C., & Chang, J. G. (2002). The correlation between CpG methylation and protein expression of P16 in oral squamous cell carcinomas. International Journal of Molecular Medicine, 10, 551–554.

    Google Scholar 

  32. Liu, H. W., Hu, B. Q., & Cao, C. F. (2005). The p16 methylation in oral leukoplakia and oral squamous cell carcinoma. Zhonghua Kou Qiang Yi Xue Za Zhi, 40, 94–97.

    CAS  Google Scholar 

  33. Ogi, K., Toyota, M., Ohe-Toyota, M., Tanaka, N., Noguchi, M., Sonoda, T., Kohama, G., & Tokino, T. (2002). Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clinical Cancer Research, 8, 3164–3171.

    CAS  Google Scholar 

  34. Viswanathan, M., Tsuchida, N., & Shanmugam, G. (2003). Promoter hypermethylation profile of Tumor associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. International Journal of Cancer, 105, 41–46.

    Article  CAS  Google Scholar 

  35. Kulkarni, V., & Saranath, D. (2004). Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncology, 40, 145–153.

    Article  CAS  Google Scholar 

  36. Kato, K., Hara, A., Kuno, T., Mori, H., Yamashita, T., Toida, M., & Shibata, T. (2006). Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa. Journal of Cancer Research and Clinical Oncology, 132, 735–743.

    Article  CAS  Google Scholar 

  37. Viet, C. T., Jordan, R. C., & Schmidt, B. L. (2007). DNA promoter hypermethylation in saliva for the early diagnosis of oral cancer. Journal of the California Dental Association, 35, 844–849.

    CAS  Google Scholar 

  38. Kurasawa, Y., Shiiba, M., Nakamura, M., et al. (2008). PTEN expression and methylation status inoral squamous cell carcinoma. Oncology Reports, 19, 1429–1434.

    CAS  Google Scholar 

  39. Caamano, J., Zhang, S. Y., Rosvold, E. A., Bauer, B., & Klein-Szanto, A. J. (1993). p53 alterations in human squamous cell carcinomas and carcinoma cell lines. The American Journal of Pathology, 142, 1131–1139.

    CAS  Google Scholar 

  40. Baral, R., Patnaik, S., & Das, B. R. (1998). Co-overexpression of p53 and c-myc proteins linked with advanced stages of betel- and tobacco-related oral squamous cell carcinomas from eastern India. European Journal of Oral Sciences, 106, 907–913.

    Article  CAS  Google Scholar 

  41. Roth, M. J., Abnet, C. C., Hu, N., Wang, Q. H., Wie, W. Q., Green, L., D’Alelio, M., Qiao, Y. L., Dawsey, S. M., Taylor, P. R., & Woodson, K. (2006). p16, MGMT, RARbeta2, CLDN3, CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions. Oncology Reports, 15, 1591–1597.

    CAS  Google Scholar 

  42. Sawhney, M., Rohatgi, N., Kaur, J., Gupta, S. D., Deo, S. V., Shukla, N. K., & Ralhan, R. (2007). MGMT expression in oral precancerous and cancerous lesions: correlation with progression, nodal metastasis and poor prognosis. Oral Oncology, 43, 515–522.

    Article  CAS  Google Scholar 

  43. Ishida, E., Nakamura, M., Ikuta, M., et al. (2005). Promotorhypermethylation of p14ARF is a keyalteration for progression of oral squamous cell carcinoma. Oral Oncology, 41, 614–622.

    Article  CAS  Google Scholar 

  44. Sailasree, R., Abhilash, A., Sathyan, K. M., Nalinakumari, K. R., Thomas, S., & Kannan, S. (2008). Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiology, Biomarkers and Prevention, 17, 414–420.

    Article  CAS  Google Scholar 

  45. Yeh, K. T., Chang, J. G., Lin, T. H., et al. (2003). Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncology Reports, 10, 659–663.

    CAS  Google Scholar 

  46. Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21, 4231–4236.

    Article  CAS  Google Scholar 

  47. Shaw, R. J., Liloglou, T., Rogers, S. N., et al. (2006). Promoter methylation of P16, RARβ, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. British Journal of Cancer, 94, 561–568.

    Article  CAS  Google Scholar 

  48. Huang, K. H., Huang, S. F., Chen, I. H., Liao, C. T., Wang, H. M., & Hsieh, L. L. (2009). Methylationof RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clinical Cancer Research, 15, 4174–4180.

    Article  CAS  Google Scholar 

  49. Uesugi, H., Uzawa, K., Kawasaki, K., et al. (2005). Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. International Journal of Molecular Medicine, 15, 597–602.

    CAS  Google Scholar 

  50. Gao, S., Eiberg, H., Krogdahl, A., Liu, C. J., & Sorensen, J. A. (2005). Cytoplasmic expression of E-cadherin and β- Catenin correlated with LOH and hypermethylation of the APC gene in oral squamous cell carcinomas. Journal of Oral Pathology & Medicine, 34, 116–119.

    Article  CAS  Google Scholar 

  51. Gonzalez-Ramirez, I., Ramirez-Amador, V., Irigoyen-Camacho, M. E., et al. (2011). hMLH1 promoter methylation is an early event in oral cancer. Oral Oncology, 47, 22–26.

    Article  CAS  Google Scholar 

  52. Gao, F., Huang, C., Lin, M., et al. (2009). Frecuent inactivation of RUNX3 by promoter hypermethylation and protein mislocation in oral squamous cell carcinomas. Journal of Cancer Research and Clinical Oncology, 135, 739–747.

    Article  CAS  Google Scholar 

  53. Sogabe, Y., Suzuki, H., Toyota, M., Ogi, K., Imai, T., Nojima, M., Sasaki, Y., Hiratsuka, H., & Tokino, T. (2008). Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. International Journal of Oncology, 32, 1253–1261.

    CAS  Google Scholar 

  54. Suzuki, E., Imoto, I., Pimkhaokham, A., et al. (2007). PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation. Oncogene, 26, 7921–7932.

    Article  CAS  Google Scholar 

  55. Suzuki, M., Shinohara, F., Nishimura, K., Echigo, S., & Rikiishi, H. (2007). Epigenetic regulation ofchemosensitivity to 5-fluorouracil and cisplatin by zebularine in oral squamous cell carcinoma. International Journal of Oncology, 31, 1449–1456.

    CAS  Google Scholar 

  56. Suzuki, M., Shinohara, F., Endo, M., Sugazaki, M., Echigo, S., & Rikiishi, H. (2008). Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemotherapy and Pharmacology, 64, 223–232.

    Article  CAS  Google Scholar 

  57. Murakami, J., Lee, Y. J., Kokeguchi, S., et al. (2007). Depletion of O6-methylguanine-DNA methyltransferase by O6-benzylguanine enhances 5-FU cytotoxicity in colon and oral cancer cell lines. Oncology Reports, 17, 1461–1467.

    CAS  Google Scholar 

  58. Timmermann, S., Hinds, P. W., & Munger, K. (1998). Re-expression of endogenous p16ink4a inOral squamous cell carcinoma lines by 5-aza-2'-deoxycytidine treatment induces a senescence-like state. Oncogene, 17, 3445–3453.

    Article  CAS  Google Scholar 

  59. Szyf, M., Pakneshan, P., & Rabbani, S. A. (2004). DNA demethylation and cancer: therapeutic implications. Cancer Letters, 211, 133–143.

    Article  CAS  Google Scholar 

  60. Ju, J., Hong, J., Zhou, J. N., Pan, Z., Bose, M., Liao, J., Yang, G. Y., Liu, Y. Y., Hou, Z., Lin, Y., Ma, J., Shih, W. J., Carothers, A. M., & Yang, C. S. (2005). Inhibition of intestinal tumorigenesisin Apc min/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Research, 65, 10623–10631.

    Article  CAS  Google Scholar 

  61. Wilson, A. S., Power, B. E., & Molly, P. L. (2007). DNA hypomethylation and human diseases. Biochimica et Biophysica Acta, 1775, 138–162.

    CAS  Google Scholar 

  62. Tsao, A. S., Liu, D., Martin, J., et al. (2009). Phase II randomized, placebo-controlled trial of greentea extract in patients with high-risk oral premalignant lesions. Cancer Prevention Research (Philadelphia, Pa.), 2, 931–941.

    Article  CAS  Google Scholar 

  63. Ide, R., Fujino, Y., Hoshiyama, Y., Mizoue, T., Kubo, T., Pham, T. M., Shirane, K., Tokui, N., Sakata, K., Tamakoshi, A., et al. (2007). A prospective study of green tea consumption and oral cancer incidence in Japan. Annals of Epidemiology, 17, 821–826.

    Article  Google Scholar 

  64. Radoi, L., Paget-Bailly, S., Menvielle, G., Cyr, D., Schmaus, A., Carton, M., Guida, F., Cenee, S., Sanchez, M., Guizard, A. V., et al. (2013). Tea and coffee consumption and risk of oral cavity cancer: results of a large population-based case-control study, the ICARE study. Cancer Epidemiology, 37, 284–289.

    Article  CAS  Google Scholar 

  65. Li, N., Han, C., & Chen, J. (1999). Tea preparations protect against DMBA-induced oral carcinogenesis in hamsters. Nutrition and Cancer, 35, 73–79.

    Article  CAS  Google Scholar 

  66. Sugimura, T. (1992). Multistep carcinogenesis: a 1992 perspective. Science, 258, 603–607.

    Article  CAS  Google Scholar 

  67. Srinivasan, P., Suchalatha, S., Babu, P. V., et al. (2008). Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-Nitroquinoline 1-oxideinduced oral cancer. Chemico-Biological Interactions, 172, 224–234.

    Article  CAS  Google Scholar 

  68. Chang, H. C., Cho, C. Y., & Hung, W. C. (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Science, 98, 169–173.

    Article  CAS  Google Scholar 

  69. Cho, C. Y., Wang, J. H., Chang, H. C., et al. (2007). Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. Journal of Cellular Physiology, 213, 65–69.

    Article  CAS  Google Scholar 

  70. Kato, K., Long, N. K., Makita, H., et al. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99, 647–654.

    Article  CAS  Google Scholar 

  71. Fang, M. Z., Wang, Y. W., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., & Yang, C. S. (2003). Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Research, 63, 7563–7570.

    CAS  Google Scholar 

  72. Khafif, S. P., Schantz, M., et al. (1998). Green tea regulates cell cycle progression in oral Leukoplakia. Head & Neck, 20, 528–534.

    Article  CAS  Google Scholar 

  73. Masuda, M., Suzui, M., & Weinstein, I. B. (2001). Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clinical Cancer Research, 7, 4220–4229.

    CAS  Google Scholar 

  74. Liu, X., Zhang, D. Y., Zhang, W., et al. (2011). The effect of green tea extract and EGCG on the Signaling network in squamous cell carcinoma. Nutrition and Cancer, 63, 466–475.

    Article  Google Scholar 

  75. Hsu, S., Lewis, J., Singh, B., et al. (2003). Green tea polyphenol targets the mitochondria in tumorcells inducing caspase 3- dependent apoptosis. Anticancer Research, 23, 1533–1539.

    CAS  Google Scholar 

  76. Hsu, S., Farrey, K., Wataha, J., et al. (2005). Role of p21WAF1 in green tea polyphenol-induced growth arrest and apoptosis of oral carcinoma cells. Anticancer Research, 25, 63–67.

    CAS  Google Scholar 

  77. Lee, W. J., Shim, J. Y., & Zhu, B. T. (2005). Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Molecular Pharmacology, 68, 1018–1030.

    Article  CAS  Google Scholar 

  78. Lee, W. J., & Zhu, B. T. (2006). Inhibition of DNA methylation by caffeic acid and chlorogenicacid, two common catechol-containing coffee polyphenols. Carcinogenesis, 27, 269–277.

    Article  CAS  Google Scholar 

  79. Fang, M., Chen, D., & Yang, C. S. (2007). Dietary polyphenols may affect DNA methylation. The Journal of Nutrition, 137, 223S–228S.

    CAS  Google Scholar 

  80. Fang, M. Z., Chen, D., Sun, Y., Jin, Z., Christman, J. K., & Yang, C. S. (2005). Reversal of hypermethylation and reactivation of p16INK4a, RAR-β, and MGMT genes by genistein and other isoflavones from soy. Clinical Cancer Research, 11, 7033–7041.

    Article  CAS  Google Scholar 

  81. Yang, Y., Zhou, Z. T., & Ge, J. P. (2006). Effect of genistein on DMBA-induced oral carcinogenesis in hamster. Carcinogenesis, 27, 578–583.

    Article  CAS  Google Scholar 

  82. Myoung, H., Hong, S. P., Yun, P. Y., Lee, J. H., & Kim, M. J. (2003). Anticancer effect of genistein in oral squamous cell carcinoma with respect to angiogenesis and in vitro invasion. Cancer Science, 94, 215–220.

    Article  CAS  Google Scholar 

  83. Graf, B. A., Milbury, P. E., & Blumberg, J. B. (2005). Flavonols, flavonones, flavanones and human health: epidemological evidence. Journal of Medicinal Food, 8, 281–290.

    Article  CAS  Google Scholar 

  84. Arts, I. C. W., & Hollman, P. C. H. (2005). Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition, 81, 317–325.

    Google Scholar 

  85. Hauser, A. T., & Jung, M. (2008). Targeting epigenetic mechanisms: potential of natural products in cancer chemoprevention. Planta Medica, 74, 1593–1601.

    Article  CAS  Google Scholar 

  86. Gilbert, E. R., & Liu, D. (2010). Flavonoids influence epigenetic-modifying enzyme activity: structure–function relationships and the therapeutic potential for cancer. Current Medicinal Chemistry, 17, 1756–1768.

    Article  CAS  Google Scholar 

  87. Li, Y., & Tollefsbol, T. O. (2010). Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Current Medicinal Chemistry, 17, 2141–2151.

    Article  Google Scholar 

  88. Tan, S., Wang, C., Lu, C., Zhao, B., Cui, Y., Shi, X., & Ma, X. (2009). Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy, 55, 6–10.

    Article  CAS  Google Scholar 

  89. Fini, L., Selgrad, M., Fogliano, V., et al. (2007). Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. The Journal of Nutrition, 137, 2622–2628.

    CAS  Google Scholar 

  90. Agarwal, S., Karishma, S. A., Jagadeesh, S., et al. (2007). Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochemical and Biophysical Research Communications, 362, 212–217.

    Article  CAS  Google Scholar 

  91. Liu, Z., Xie, Z., Jones, W., Pavlovicz, R. E., Liu, S., Yu, J., et al. (2009). Curcumin is a potent DNA hypomethylation agent. Bioorganic and Medicinal Chemistry Letters, 19, 706–709.

    Article  CAS  Google Scholar 

  92. Jha, A. K., Nikbakht, M., Parashar, G., Shrivastava, A., Capalash, N., & Kaur, J. (2010). Reversal of hypermethylation and reactivation of the RARbeta2 gene by natural compounds in cervical cancer cell lines. Folia Biologica (Praha), 56, 195–200.

    CAS  Google Scholar 

  93. Liu, Y. L., Yang, H. P., Gong, L., Tang, C. L., & Wang, H. J. (2011). Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines. Molecular Medicine Reports, 4, 675–679.

    Article  CAS  Google Scholar 

  94. Khor, T. O., Huang, Y., Wu, T. Y., Shu, L., Lee, J., & Kong, A. N. (2011). Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGsdemethylation. Biochemical Pharmacology, 82, 1073–1078.

    Article  CAS  Google Scholar 

  95. Shu, L., Khor, T. O., Lee, J. H., Boyanapalli, S. S., Huang, Y., Wu, T. Y., et al. (2011). EpigeneticCpGdemethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. The AAPS Journal, 13, 606–614.

    Article  CAS  Google Scholar 

  96. Naveed, A. C., Bhavaniprasad, V., Anbarasu, K., Nadeem, S., & Trupti, N. P. (2013). From natural products to drugs for epimutation computer-aided drug design. Applied Biochemistry and Biotechnology, 170, 164–175.

    Article  CAS  Google Scholar 

  97. Paluszczak, J., Krajka-Kuzniak, V., & Baer-Dubowska, W. (2010). The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicology Letters, 192, 119–125.

    Article  CAS  Google Scholar 

  98. Yan, L., Junye, L., Xinpig, L., Kefei, X., Yun, W., Fuyang, L., & Libo, Y. (2006). Resveratrol- induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated akt and caspase-9. Applied Biochemistry and Biotechnology, 135, 181–192.

    Article  Google Scholar 

  99. Stefanska, B., Salame, P., Bednarek, A., & Fabianowska-Majewska, K. (2011). Comparative effectsof retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. The British Journal of Nutrition, 107, 781–790.

    Article  CAS  Google Scholar 

  100. Papoutsis, A. J., Borg, J. L., Selmin, O. I., & Romagnolo, D. F. (2011). BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. The Journal of Nutritional Biochemistry, 23, 1324–1332.

    Article  CAS  Google Scholar 

  101. Meeran, S. M., Patel, S. N., & Tollefsbol, T. O. (2010). Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One, 5, e11457.

    Article  CAS  Google Scholar 

  102. Wang, L. G., Beklemisheva, A., Liu, X. M., Ferrari, A. C., Feng, J., & Chiao, J. W. (2007). Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Molecular Carcinogenesis, 46, 24–31.

    Article  CAS  Google Scholar 

  103. King-Batoon, A., Leszczynska, J. M., & Klein, C. B. (2008). Modulation of gene methylation bygenistein or lycopene in breast cancer cells. Environmental and Molecular Mutagenesis, 49, 36–45.

    Article  CAS  Google Scholar 

  104. Pina, I. C., Gautschi, J. T., Wang, G. Y., et al. (2003). Psammaplins from the sponge Pseudoceratinapurpurea: inhibition of both histone deacetylase and DNA methyltransferase. The Journal of Organic Chemistry, 68, 3866–3873.

    Article  CAS  Google Scholar 

  105. McPhail, K. L., France, D., Cornell-Kennon, S., & Gerwick, W. H. (2004). Peyssonenynes A and B, novel enediyneoxylipins with DNA methyl transferase inhibitory activity from the red marine alga Peyssonneliacaulifera. Journal of Natural Products, 67, 1010–1013.

    Article  CAS  Google Scholar 

  106. Liu, Z., Liu, S., Xie, Z., Pavlovicz, R. E., Wu, J., Chen, P., et al. (2009). Modulation of DNA methylation by a sesquiterpene lactone parthenolide. The Journal of Pharmacology and Experimental Therapeutics, 329, 505–514.

    Article  CAS  Google Scholar 

  107. Serra, A. T., Matias, A. A., Almeida, A. P., Bronze, M. R., Alves, P. M., de Sousa, H. C., & Duarte, C. M. (2011). Processing cherries (Prunusavium) using supercritical fluid technology. Part 2: evaluation of SCF extracts as promising natural chemotherapeutical agents. Journal of Supercritical Fluids, 55, 1007–1013.

    Article  CAS  Google Scholar 

  108. James, T., & Belanger, N. D. (1998). Perillyl alcohol: applications in oncology. Alternative Medicine Review, 3, 448–457.

    Google Scholar 

  109. Jaganathan, S. K., & Supriyanto, E. (2012). Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules, 17, 6290–6304.

    Article  CAS  Google Scholar 

  110. Kang, J. Y., Lee, J. M., Chun, K. S., et al. (1998). Induction of apoptosis in HL-60 cells and inhibition of mouse skin tumor promotion by diarylheptanoids from Alpiniaoxyphylla Miquel (Zingiberaceae). Proceedings of the American Association for Cancer Research, 39, 641.

    Google Scholar 

  111. Chinery, R., Beauchamp, R. D., Shyr, Y., Kirkland, S. C., Coffcy, R. J., & Morrow, J. D. (1998). Antioxidants reduce cyclooxygenase- 2 expression, prostaglandin production, and prolioferation in colorectal- cancer cells. Cancer Research, 58, 2323–2327.

    CAS  Google Scholar 

  112. Chun, K. S., Sohn, Y., Kim, H. S., et al. (1999). Antitumour promoting potential of naturally occurring diaryheptenoids structurally related to curcumin. Mutation Research, 428, 49–57.

    Article  CAS  Google Scholar 

  113. Kim, J. Y., Kim, E. H., Kim, S. U., Kwon, T. K., & Choi, K. S. (2010). Capsaicin sensitizes malignantglioma cells to TRAILmediated apoptosis via DR5 upregulation and surviving downregulation. Carcinogenesis, 31, 367–375.

    Article  CAS  Google Scholar 

  114. Wolvetang, E. J., Larm, J. A., Moutsoulas, P., & Lawen, A. (1996). Apoptosis induced by inhibitors of the plasma membrane NADH- oxidase involves Bcl-2 and calcineurin. Cell Growth and Differentiation, 7, 1315–1325.

    CAS  Google Scholar 

  115. Surh, Y.-J., Lee, E., & Lee, J. M. (1998). Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutation Research, 402, 259–267.

    Article  CAS  Google Scholar 

  116. Shukla, Y., & Singh, M. Cancer preventive properties of ginger: a brief review. Food and Chemical Toxicology, 45, 683–690.

  117. Lee, E., & Surh, Y.-J. (1998). Induction of apoptosis in HL-60 cells by pungent vanilloids,[6]-gingerol and [6]-paradol. Cancer Letters, 134, 163–168.

    Article  CAS  Google Scholar 

  118. Flynn, D. L., Rafferty, M. F., & Boctor, A. M. (1986). Inhibition of human neutrophil 5-lipoxygenaseactivity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins, Leukotrienes, and Medicine, 24, 195–198.

    Article  CAS  Google Scholar 

  119. Kiuchi, F., Iwakami, S., Shibuya, M., Hanaoka, F., & Sankawa, U. (1992). Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chemical and Pharmaceutical Bulletin, 40, 387–391.

    Article  CAS  Google Scholar 

  120. Samaha, H. S., Kelloff, G. J., Steele, V., Rao, C. V., & Reddy, B. S. (1997). Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon chemoprevention and promotion. Cancer Research, 57, 1301–1305.

    CAS  Google Scholar 

  121. Nelson, E. K. (1934). The occurrence of pentamethylflavonol in tangerine peel. Journal of the American Chemical Society, 56, 1392–1393.

    Article  CAS  Google Scholar 

  122. Hirano, T., Abe, K., Gotoh, M., & Oka, K. (1995). Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normallymphocytes. British Journal of Cancer, 72, 1380–1388.

    Article  CAS  Google Scholar 

  123. Chobotova, K., Vernallis, A. B., & Majid, F. A. (2010). BromelainÊs activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Letters, 290, 148–156.

    Article  CAS  Google Scholar 

  124. Nadzirah, K. Z., Zainal, S., Noriham, A., & Normah, I. (2013). Efficacy of selected purification techniques for bromelain. International Food Research Journal, 20, 43–46.

    CAS  Google Scholar 

  125. Bhui, K., Tyagi, S., Prakash, B., & Shukla, Y. (2010). Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells. Biofactors, 36, 474–482.

    Article  CAS  Google Scholar 

  126. Pillai, K., Akhter, J., Chua, T. C., & Morris, D. L. (2013). Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Investigation, 31, 241–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help provided by the Department of Zoology, Delhi University, Delhi (India), and Department of Biotechnology, IMS Engineering College, U.P. (India).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

This study does not involve human participants and animal samples/biopsy and, therefore, there is no need of informed consent.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhimanyu Kumar Jha or Anju Shrivastava.

Additional information

Meenakshi Jha and Ruchi Aggarwal contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, M., Aggarwal, R., Jha, A.K. et al. Natural Compounds: DNA Methyltransferase Inhibitors in Oral Squamous Cell Carcinoma. Appl Biochem Biotechnol 177, 577–594 (2015). https://doi.org/10.1007/s12010-015-1768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1768-y

Keywords

Navigation