Skip to main content
Log in

Cellulase Production by Streptomyces viridobrunneus SCPE-09 Using Lignocellulosic Biomass as Inducer Substrate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An actinomycete strain, isolated from a soil sample under a sugar cane plantation in Brazil and identified as Streptomyces viridobrunneus SCPE-09, was selected as a promising cellulolytic strain, and tested for its ability to produce cellulases from agro-industrial residues. Sugar cane bagasse or wheat bran was tested as carbon source, and corn steep liquor tested as nitrogen source. Different concentrations of carbon and nitrogen were tested using factorial design to identify optimal cellulose production. The results showed that media containing wheat bran 2.0% (w/v) and corn steep liquid 0.19% (w/v) lead to the highest production, 2.0 U mL−1 of CMCase, obtained on the fifth day of fermentation. The pH and temperature profile showed optimal activity at pH 4.9 and 50°C. As for thermostability, endoglucanases were most tolerant at 50°C, retaining more than 80% of maximal activity even after 2 h of incubation. Zymogram analyses using supernatant from growth under optimized conditions revealed the presence of two CMCase bands with apparent molecular masses of 37 and 119 kDa. The combination of pH tolerance and CMCase production from agro-industrial residues by S. viridobrunneus SCPE-09 offers promise for future bioethanol biotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodfellow, M., Williams, S. T., & Mordarski, M. (1988). In M. Goodfellow, S. T. Williams, & M. Mordarski (Eds.), In Actinomycetes in Biotechnology: Actinomycete Enzymes (pp. 219–283). London: Academic.

    Google Scholar 

  2. Nascimento, R. P., Alves, N., Jr., Pereira, N., Jr., Bon, E. P. S., & Coelho, R. R. R. (2009). Letters in Applied Microbiology, 48, 529–535. doi:10.1111/j.1472-765X.2009.02575.x.

    Article  CAS  Google Scholar 

  3. Nascimento, R. P., Marques, S., Alves, L., Gírio, F. M., Amaral-Collaço, M. T., Sacramento, D. R., et al. (2003). World Journal of Microbiology and Biotechnology, 19, 879–881. doi:10.1023/B:WIBI.0000007287.03281.dd.

    Article  Google Scholar 

  4. Grigorevski-Lima, A. L., Nascimento, R. P., Bon, E. P. S., & Coelho, R. R. R. (2005). Enzyme and Microbial Technology, 37, 272–277. doi:10.1016/j.enzmictec.2005.03.016.

    Article  Google Scholar 

  5. De Azeredo, L. A. I., De Lima, M. B., Coelho, R. R. R., & Freire, D. M. G. (2006). Current Microbiology, 53, 335–339. doi:10.1007/s00284-006-0163-x.

    Article  CAS  Google Scholar 

  6. Souza, R. F., Coelho, R. R. R., Macrae, A., Soares, R. M. A., Nery, D. C. M., Semêdo, L. T. A. S., et al. (2008). International Journal of Systematic and Evolutionary Microbiology, 58, 2774–2778. doi:10.1099/ijs.0.65768-0.

    Article  Google Scholar 

  7. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383. doi:10.1016/S0734-9750(00)00041-0.

    Article  CAS  Google Scholar 

  8. Barros, R. R. O., Oliveira, R. A., Gottschalk, L. M. F., & Bon, E. P. S. (2010). Applied Biochemistry and Biotechnology, 161, 448–454. doi:10.1007/s12010-009-8894-3.

    Article  CAS  Google Scholar 

  9. Maeda, R. N., Da Silva, M. M. P., Santa Anna, L. M. M., & Pereira, N., Jr. (2010). Applied Biochemistry and Biotechnology, 161, 411–422. doi:10.1007/s12010-009-8875-6.

    Article  CAS  Google Scholar 

  10. Palmarola-Adrados, B., Choteborská, A., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850. doi:10.1016/j.biortech.2004.07.004.

    Article  CAS  Google Scholar 

  11. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80. doi:10.1016/S0960-8524(99)00142-X.

    Article  CAS  Google Scholar 

  12. Adsul, M. G., Ghule, J. E., Singh, R., Shaikh, H., Bastawde, K. B., Gokhale, D. V., et al. (2004). Carbohydrate Polymers, 57, 67–72. doi:10.1016/j.carbpol.2004.04.001.

    Article  CAS  Google Scholar 

  13. Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Renewable Energy, 34, 421–424. doi:10.1016/j.renene.2008.05.008.

    Article  CAS  Google Scholar 

  14. Semêdo, L. T. A. S., Gomes, R. C., Linhares, A. A., Duarte, G. F., Nascimento, R. P., Rosado, A. S., et al. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 1323–1328. doi:10.1099/ijs.0.02844-0.

    Article  Google Scholar 

  15. Shirling, E. B., & Gottlieb, D. (1966). International Journal of Systematic Bacteriology, 16(3), 313–340. doi:10.1099/00207713-16-3-313.

    Article  Google Scholar 

  16. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., et al. (1985). Genetic manipulation of Streptomyces. A laboratory Manual. Norwich: The John Innes Institute.

    Google Scholar 

  17. Sazci, A., Radford, A., & Erenler, K. (1986). The Journal of Applied Bacteriology, 61, 559–562. doi:10.1111/j.1365-2672.1986.tb01729.x.

    CAS  Google Scholar 

  18. Plant, J. E., Attwell, R. W., & Smith, C. A. (1988). Journal of Microbiological Methods, 7, 259–263. doi:10.1016/0167-7012(88)90020-6.

    Article  CAS  Google Scholar 

  19. Breccia, J. D., Castro, G. R., Baigori, M. D., & Sineriz, F. (1995). The Journal of Applied Bacteriology, 78(5), 469–472. doi:10.1111/j.1365-2672.1995.tb03086.x.

    Google Scholar 

  20. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  21. Rodrigues, M.I., and Iemma, A.F. (2009). Planejamento de Experimentos e Otimização de Processos. Cárita Editora, 2nd edition, Campinas, SP, Brasil, pp. 135–232.

  22. Miller, L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  23. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  24. Nascimento, R. P., Coelho, R. R. R., Marques, S., Alves, L., Gírio, F. M., Bon, E. P. S., et al. (2002). Enzyme and Microbial Technology, 31, 549–555. doi:10.1016/s0141-0229(02)00150-3.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Cezar, T., & Mrsa, V. (1996). Enzyme and Microbial Technology, 19, 289–296. doi:10.1016/0141-0229(95)00248-0.

    Article  Google Scholar 

  27. Tuncer, M., Kuru, A., Isikli, M., Sahin, N., & Çelenk, F. G. (2004). Journal of Applied Microbiology, 97, 783–791. doi:10.1111/j.1365-2672.2004.02361.x.

    Article  CAS  Google Scholar 

  28. Godden, B., Legon, T., Helvenstein, P., & Penninckx, M. (1989). Journal of General Microbiology, 135, 285–292. doi:10.1099/00221287-135-2-285.

    CAS  Google Scholar 

  29. Jang, H. D., & Chen, K. S. (2003). World Journal of Microbiology & Biotechnology, 19, 263–268. doi:10.1023/A:1023641806194.

    Article  CAS  Google Scholar 

  30. Schrempf, H., & Walter, S. (1995). International Journal of Biological Macromolecules, 17, 353–355. doi:10.1016/0141-8130(96)81845-9.

    Article  CAS  Google Scholar 

  31. George, S. P., Ahmad, A., & Rao, M. B. (2001). Bioresource Technology, 77, 171–175. doi:10.1016/S0960-8524(00)00150-4.

    Article  CAS  Google Scholar 

  32. Hoshiro, E., Wada, Y., & Nishizawa, K. (1999). Journal of Bioscience and Bioengineering, 88, 519–525. doi:10.1016/S1389-1723(00)87669-0.

    Article  Google Scholar 

  33. Tao, Y. M., Zhu, X. Z., Huang, J. Z., Ma, S. J., Wu, X. B., Long, M. N., et al. (2010). Journal of Agricultural and Food Chemistry, 58, 6126–6130. doi:10.1021/jf1003896.

    Article  CAS  Google Scholar 

  34. Dutta, T., Sahoo, R., Sengupta, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 275–282. doi:10.1007/s10295-008-0304-2.

    Article  CAS  Google Scholar 

  35. Shanmughapriya, S., Kiran, G. S., Selvin, J., Thomas, T. A., & Rani, C. (2010). Applied Biochemistry and Biotechnology, 162, 625–640. doi:10.1007/s12010-009-8747-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq), Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Conselho de Ensino para Graduados e Pesquisas (CEPG/UFRJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Pires Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Vinha, F.N.M., Gravina-Oliveira, M.P., Franco, M.N. et al. Cellulase Production by Streptomyces viridobrunneus SCPE-09 Using Lignocellulosic Biomass as Inducer Substrate. Appl Biochem Biotechnol 164, 256–267 (2011). https://doi.org/10.1007/s12010-010-9132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9132-8

Keywords

Navigation