Skip to main content
Log in

Soluble Expression and Characterization of a New scFv Directed to Human CD123

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Leukemic cancer stem cells (LSCs), as a unique cell population in acute myeloid leukemia (AML) marked by CD123 overexpression, are thought to play a key role in relapsed AML after chemotherapy. Thus, CD123 is considered as a particularly important target candidate for antibody-derived diagnosis and therapy. In the present work, we constructed an immunized murine antibody phage display library and isolated the functional anti-CD123 Single-chain fragment variable (scFv) clones. We also introduced fusing variable light (VL) and heavy (VH) chains with a new 18-amino acid residue linker as an alternative to conventional linkers. CD123-specific phage clones were progressively enriched through 4 rounds of biopanning, validated by phage ELISA, and anti-CD123 scFv clones with highest affinity were produced in Escherichia coli. The expression and purification of soluble scFv were verified by Western blot, and the results were indicative of the functionality of our proposed linker. The purified scFv specifically recognized CD123 by ELISA and flow cytometry, without any cross-reactivity with other related cell markers. Affinity of anti-CD123 scFv was measured to be 6.9 × 10−7 M, using the competitive ELISA. Our work, therefore, provides a framework for future studies involving biological functions and applications of our anti-CD123 scFv. It also reveals the feasibility of high throughput methods to isolate biomarker-specific scFvs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

CD123:

cluster of differentiation 123

LSCs:

leukemic cancer stem cells

scFv:

single-chain fragment variable

VH:

variable heavy chains of an antibody

VL:

variable light chains of an antibody

References

  1. Rubnitz, J. E., Gibson, B., & Smith, F. O. (2010). Acute myeloid leukemia. Hematology/Oncology Clinics of North America, 24(1), 35–63.

    Article  Google Scholar 

  2. Jordan, C., et al. (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14(10), 1777–1784.

    Article  CAS  Google Scholar 

  3. Testa, U., et al. (2004). Interleukin-3 receptor in acute leukemia. Leukemia, 18(2), 219–226.

    Article  CAS  Google Scholar 

  4. Ravandi, F., & Estrov, Z. (2006). Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clinical Cancer Research, 12(2), 340–344.

    Article  CAS  Google Scholar 

  5. Liu, K., et al. (2015). CD123 and its potential clinical application in leukemias. Life Sciences, 122, 59–64.

    Article  CAS  Google Scholar 

  6. Taussig, D. C., et al. (2005). Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood, 106(13), 4086–4092.

    Article  CAS  Google Scholar 

  7. Hammers, C. M., & Stanley, J. R. (2014). Antibody phage display: technique and applications. The Journal of Investigative Dermatology, 134(2), e17.

    Article  CAS  Google Scholar 

  8. Sidhu, S. S. (2000). Phage display in pharmaceutical biotechnology. Current Opinion in Biotechnology, 11(6), 610–616.

    Article  CAS  Google Scholar 

  9. Bird, R. E., et al. (1988). Single-chain antigen-binding proteins. Science, 242(4877), 423–426.

    Article  CAS  Google Scholar 

  10. Carter, P. J. (2006). Potent antibody therapeutics by design. Nature Reviews Immunology, 6(5), 343–357.

    Article  CAS  Google Scholar 

  11. Pansri, P., et al. (2009). A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnology, 9(1), 6.

    Article  Google Scholar 

  12. Stein, C., et al. (2010). Novel conjugates of single‐chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. British Journal of Haematology, 148(6), 879–889.

    Article  CAS  Google Scholar 

  13. Gu, X., et al. (2010). Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Annals of Biomedical Engineering, 38(2), 537–549.

    Article  Google Scholar 

  14. Alfthan, K., et al. (1995). Properties of a single-chain antibody containing different linker peptides. Protein Engineering, 8(7), 725–731.

    Article  CAS  Google Scholar 

  15. Shan, D., et al. (1999). Characterization of scFv-Ig constructs generated from the anti-CD20 mAb 1F5 using linker peptides of varying lengths. The Journal of Immunology, 162(11), 6589–6595.

    CAS  Google Scholar 

  16. Breitling, F., et al. (1991). A surface expression vector for antibody screening. Gene, 104(2), 147–153.

    Article  CAS  Google Scholar 

  17. Barbas, C. F. (2001). Phage display: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

  18. Lee, C. M., et al. (2007). Selection of human antibody fragments by phage display. Nature Protocols, 2(11), 3001–3008.

    Article  CAS  Google Scholar 

  19. Martineau, P. (2010). Affinity measurements by competition ELISA. In Antibody engineering Vol 2 (pp. 657–665). Berlin Heidelberg: Springer.

  20. Roncolato, E. C., et al. (2015). Phage display as a novel promising antivenom therapy: a review. Toxicon, 93, 79–84.

    Article  CAS  Google Scholar 

  21. Kellner, C., Nodehi, S. M., Peipp, M. (2010) Mouse immune libraries for the generation of ScFv fragments directed against human cell surface antigens. In Antibody engineering Vol 1 (pp. 47–63). Berlin Heidelberg: Springer.

  22. Hussein, A. H., et al. (2007). Construction and characterization of single-chain variable fragment antibodies directed against the Bordetella pertussis surface adhesins filamentous hemagglutinin and pertactin. Infection and Immunity, 75(11), 5476–5482.

    Article  CAS  Google Scholar 

  23. Dong, L., et al. (2003). Generation of affinity matured scFv antibodies against mouse neural cell adhesion molecule L1 by phage display. Biochemical and Biophysical Research Communications, 301(1), 60–70.

    Article  CAS  Google Scholar 

  24. Wang, N., et al. (2008). Construction and characterization of phage display library: recognition of mouse serologically detected male (SDM) antigen. Animal Reproduction Science, 104(1), 93–110.

    Article  CAS  Google Scholar 

  25. Sepulveda, J., & Shoemaker, C. B. (2008). Design and testing of PCR primers for the construction of scFv libraries representing the immunoglobulin repertoire of rats. Journal of Immunological Methods, 332(1), 92–102.

    Article  CAS  Google Scholar 

  26. Nishi, M., et al. (2014). Ligation-based assembly for constructing mouse synthetic scFv libraries by chain shuffling with in vivo-amplified V H and V L fragments. Journal of Immunological Methods, 412, 53–69.

    Article  CAS  Google Scholar 

  27. Shahsavarian, M. A., et al. (2014). Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries. Journal of Immunological Methods, 407, 26–34.

    Article  CAS  Google Scholar 

  28. Shi, J., et al. (2015). Expression, purification, and characterization of scar tissue neovasculature endothelial cell-targeted rhIL10 in Escherichia coli. Applied Biochemistry and Biotechnology, 175(1), 625–634.

    Article  CAS  Google Scholar 

  29. Sonoda, H., et al. (2011). Cytoplasmic production of soluble and functional single-chain Fv-Fc fusion protein in Escherichia coli. Biochemical Engineering Journal, 53(3), 253–259.

    Article  CAS  Google Scholar 

  30. Miethe, S., et al. (2013). Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX™ bioreactor. Journal of Biotechnology, 163(2), 105–111.

    Article  CAS  Google Scholar 

  31. Sun, Y., et al. (2015). Expression and characterization of the extracellular domain of human HER2 from escherichia coli, and production of polyclonal antibodies against the recombinant proteins. Applied Biochemistry and Biotechnology, 176(4), 1029–1043.

    Article  CAS  Google Scholar 

  32. Turner, D. J., Ritter, M. A., & George, A. J. (1997). Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology. Journal of Immunological Methods, 205(1), 43–54.

    Article  CAS  Google Scholar 

  33. Wang, S.-H., et al. (2006). Construction of single chain variable fragment (scFv) and BiscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Analytical Chemistry, 78(4), 997–1004.

    Article  CAS  Google Scholar 

  34. Klement, M., et al. (2015). Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment. Journal of Biotechnology, 199, 90–97.

    Article  CAS  Google Scholar 

  35. Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369.

    Article  CAS  Google Scholar 

  36. Schmiedl, A., Breitling, F., & Dübel, S. (2000). Expression of a bispecific dsFv–dsFv’ antibody fragment in Escherichia coli. Protein Engineering, 13(10), 725–734.

    Article  CAS  Google Scholar 

  37. Atwell, J. L., et al. (1996). Design and expression of a stable bispecific scFv dimer with affinity for both glycophorin and N9 neuraminidase. Molecular Immunology, 33(17), 1301–1312.

    Article  CAS  Google Scholar 

  38. Feng, J., et al. (2003). Design and assembly of anti-CD16 scFv antibody with two different linker peptides. Journal of Immunological Methods, 282(1), 33–43.

    Article  CAS  Google Scholar 

  39. Le Gall, F., et al. (2004). Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Engineering Design and Selection, 17(4), 357–366.

    Article  Google Scholar 

  40. Albrecht, H., DeNardo, G. L., & DeNardo, S. J. (2006). Monospecific bivalent scFv-SH: effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility. Journal of Immunological Methods, 310(1), 100–116.

    Article  CAS  Google Scholar 

  41. Gustavsson, M., et al. (2001). Stable linker peptides for a cellulose-binding domain–lipase fusion protein expressed in Pichia pastoris. Protein Engineering, 14(9), 711–715.

    Article  CAS  Google Scholar 

  42. Kumada, Y., et al. (2007). Polypeptide linkers suitable for the efficient production of dimeric scFv in Escherichia coli. Biochemical Engineering Journal, 35(2), 158–165.

    Article  CAS  Google Scholar 

  43. Whitlow, M., et al. (1993). An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Engineering, 6(8), 989–995.

    Article  CAS  Google Scholar 

  44. Zhang, J., et al. (2009). Design and optimization of a linker for fusion protein construction. Progress in Natural Science, 19(10), 1197–1200.

    Article  CAS  Google Scholar 

  45. Kiss, M. M., et al. (2011). Phage ESCape: an emulsion-based approach for the selection of recombinant phage display antibodies. Journal of Immunological Methods, 367(1), 17–26.

    Article  CAS  Google Scholar 

  46. Alirezapour, B., et al. (2013). Production and characterization of recombinant scFv against digoxin by phage display technology. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 32(3), 172–179.

    Article  CAS  Google Scholar 

  47. Min, W.-K., et al. (2010). Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1. Bioprocess and Biosystems Engineering, 33(1), 109–115.

    Article  CAS  Google Scholar 

  48. Martsev, S. P., et al. (1998). Antiferritin single-chain antibody: a functional protein with incomplete folding? FEBS Letters, 441(3), 458–462.

    Article  CAS  Google Scholar 

  49. Drees, J. J., et al. (2014). Soluble production of a biologically active single-chain antibody against murine PD-L1 in Escherichia coli. Protein Expression and Purification, 94, 60–66.

    Article  CAS  Google Scholar 

  50. Schaefer, J. V., & Pluckthun, A. (2012). Transfer of engineered biophysical properties between different antibody formats and expression systems. Protein Engineering Design and Selection, 25(10), 485–506.

    Article  CAS  Google Scholar 

  51. Renaut, L., et al. (2012) Affinity maturation of antibodies: optimized methods to generate high-quality ScFv libraries and isolate IgG candidates by high-throughput screening. In Antibody engineering Vol 1 (pp. 451–461). Berlin Heidelberg: Springer.

  52. Xia, J., et al. (2013). Isolation, identification and expression of specific human CD133 antibodies. Scientific Reports, 3, 3320.

    Google Scholar 

  53. Blazek, D., et al. (2004). Generation and characterization of single-chain antibody fragments specific against transmembrane envelope glycoprotein gp46 of maedi-visna virus. Journal of Virological Methods, 115(1), 83–92.

    Article  CAS  Google Scholar 

  54. Kim, H. S., et al. (2011). Improvement of anti-Burkholderia mouse monoclonal antibody from various phage-displayed single-chain antibody libraries. Journal of Immunological Methods, 372(1–2), 146–161.

    Article  CAS  Google Scholar 

  55. Boder, E. T., Midelfort, K. S., & Wittrup, K. D. (2000). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proceedings of the National Academy of Sciences, 97(20), 10701–10705.

    Article  CAS  Google Scholar 

  56. Hudson, P. J., & Kortt, A. A. (1999). High avidity scFv multimers: diabodies and triabodies. Journal of Immunological Methods, 231(1), 177–189.

    Article  CAS  Google Scholar 

  57. Power, B. E., & Hudson, P. J. (2000). Synthesis of high avidity antibody fragments (scFv multimers) for cancer imaging. Journal of Immunological Methods, 242(1), 193–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Postgraduate Office, Pasteur Institute of Iran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Habibi-Anbouhi, Mohsen Abolhassani or Mohammad Ali Shokrgozar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi-Kalbolandi, S., Davani, D., Golkar, M. et al. Soluble Expression and Characterization of a New scFv Directed to Human CD123. Appl Biochem Biotechnol 178, 1390–1406 (2016). https://doi.org/10.1007/s12010-015-1954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1954-y

Keywords

Navigation