Skip to main content

Advertisement

Log in

Expression and Characterization of the Extracellular Domain of Human HER2 from Escherichia Coli, and Production of Polyclonal Antibodies Against the Recombinant Proteins

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor (EGFR) family. In this study, the whole extracellular domain gene of HER2 was amplified by RT-PCR from human breast cancer cell line SK-BR-3. The genes of membrane-distal region (A) and membrane proximal region (B) of HER2 extracellular domain were amplified from the cloned template, and then inserted into the expression vector pET-28a and pET-30a, respectively. The recombinant expression vectors were transformed into Escherichia coli BL21 (DE3) cells and induced by isopropyl-b-D-thiogalactopyranoside (IPTG) for expression of proteins His-A and His-B. The expressed proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. The optimization of culture conditions led us to accomplish the recombinant protein induction with 1.0 mM IPTG at 37 °C for 8 h, and both proteins were expressed in the insoluble form. Both proteins were purified under the denaturing condition using Ni-NTA sepharose column. Balb/c mice were immunized with the purified proteins and then effectively produced polyclonal antibodies, which reached to a relatively high titer by ELISA testing and had good specificity by western blot detection. The HER2 ECD proteins His-A and His-B could be expressed in E. coli and were suitable for production of high titer antibodies against HER2 ECD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HER2:

Human epidermal growth factor receptor 2

EGFR:

Epidermal growth factor receptor

ECD:

Extracellular domain

IPTG:

Isopropyl-b-D-thiogalactopyranoside

References

  1. Bargmann, C. I., Hung, M. C., & Weinberg, R. A. (1986). The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature, 319, 226–230.

    Article  CAS  Google Scholar 

  2. Coussens, L., Yang-Feng, T. L., Liao, Y. C., Chen, E., Gray, A., McGrath, J., Seeburg, P. H., Libermann, T. A., Schlessinger, J., Francke, U., et al. (1985). Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science, 230, 1132–1139.

    Article  CAS  Google Scholar 

  3. Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G., & Bartlett, J. M. (2003). Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. Journal of Pathology, 200, 290–297.

    Article  CAS  Google Scholar 

  4. Marmor, M. D., Skaria, K. B., & Yarden, Y. (2004). Signal transduction and oncogenesis by ErbB/HER receptors. International Journal of Radiation Oncology, Biology, & Physics, 58, 903–913.

    Article  CAS  Google Scholar 

  5. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244, 707–712.

    Article  CAS  Google Scholar 

  6. Kern, J. A., Schwartz, D. A., Nordberg, J. E., Weiner, D. B., Greene, M. I., Torney, L., & Robinson, R. A. (1990). p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Research, 50, 5184–5187.

    CAS  Google Scholar 

  7. Ferretti, G., Felici, A., Papaldo, P., Fabi, A., & Cognetti, F. (2007). HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Current Opinion in Obstetrics and Gynecology, 19, 56–62.

    Article  Google Scholar 

  8. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177–182.

    Article  CAS  Google Scholar 

  9. Piccart-Gebhart, M. J. (2006). Adjuvant trastuzumab therapy for HER2-overexpressing breast cancer: what we know and what we still need to learn. European Journal of Cancer, 42, 1715–1719.

    Article  CAS  Google Scholar 

  10. Nishimura, R., Okumura, Y., & Arima, N. (2008). Trastuzumab monotherapy versus combination therapy for treating recurrent breast cancer: time to progression and survival. Breast Cancer, 15, 57–64.

    Article  Google Scholar 

  11. Dinh, P., de Azambuja, E., & Piccart-Gebhart, M. J. (2007). Trastuzumab for early breast cancer: current status and future directions. Clinical Advances in Hematology & Oncology, 5, 707–717.

    Google Scholar 

  12. Christianson, T. A., Doherty, J. K., Lin, Y. J., Ramsey, E. E., Holmes, R., Keenan, E. J., & Clinton, G. M. (1998). NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Research, 58, 5123–5129.

    CAS  Google Scholar 

  13. Doherty, J. K., Bond, C., Jardim, A., Adelman, J. P., & Clinton, G. M. (1999). The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor. Proceedings of the National Academy of Sciences of the United States of America, 96, 10869–10874.

    Article  CAS  Google Scholar 

  14. Sandri, M. T., Johansson, H., Colleoni, M., Zorzino, L., Passerini, R., Orlando, L., & Viale, G. (2004). Serum levels of HER2 ECD can determine the response rate to low dose oral cyclophosphamide and methotrexate in patients with advanced stage breast carcinoma. Anticancer Research, 24, 1261–1266.

    CAS  Google Scholar 

  15. Pichon, M. F., Hacene, K., Guepratte, S., & Neumann, R. (2004). Serum HER-2 extracellular domain (ECD) before the first metastasis in 128 breast cancer patients. Clinical Laboratory, 50, 163–170.

    CAS  Google Scholar 

  16. Ali, S. M., Leitzel, K., Chinchilli, V. M., Engle, L., Demers, L., Harvey, H. A., Carney, W., Allard, J. W., & Lipton, A. (2002). Relationship of serum HER-2/neu and serum CA 15-3 in patients with metastatic breast cancer. Clinical Chemistry, 48, 1314–1320.

    CAS  Google Scholar 

  17. Lax, I., Burgess, W. H., Bellot, F., Ullrich, A., Schlessinger, J., & Givol, D. (1988). Localization of a major receptor-binding domain for epidermal growth factor by affinity labeling. Molecular and Cellular Biology, 8, 1831–1834.

    CAS  Google Scholar 

  18. Pietras, R. J. (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene, 10, 2435–2446.

    CAS  Google Scholar 

  19. Park, J. W., Neve, R. M., Szollosi, J., & Benz, C. C. (2008). Unraveling the biologic and clinical complexities of HER2. Clinical Breast Cancer, 8, 392–401.

    Article  CAS  Google Scholar 

  20. Jana, S., & Deb, J. K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology, 67, 289–298.

    Article  CAS  Google Scholar 

  21. Tsumoto, K., Ejima, D., Kumagai, I., & Arakawa, T. (2003). Practical considerations in refolding proteins from inclusion bodies. Protein Expression and Purification, 28, 1–8.

    Article  CAS  Google Scholar 

  22. Sørensen, P., Jakobsen, E., Madsen, J., Petersen, E., Andersen, R., Østergaard, B., & Brandslund, I. (2013). Serum HER-2: sensitivity, specificity, and predictive values for detecting metastatic recurrence in breast cancer patients. Journal of Cancer Research and Clinical Oncology, 139, 1005–1013.

    Article  Google Scholar 

  23. Liu, X., He, Z., Zhou, M., Yang, F., Lv, H., Yu, Y., & Chen, Z. (2007). Purification and characterization of recombinant extracellular domain of human HER2 from Escherichia coli. Protein Expression and Purification, 53, 247–254.

    Article  CAS  Google Scholar 

  24. Rajamohan, F., Harris, M. S., Frisbie, R. K., Hoth, L. R., Geoghegan, K. F., Valentine, J. J., Reyes, A. R., Landro, J. A., Qiu, X., & Kurumbail, R. G. (2010). Escherichia coli expression, purification and characterization of functional full-length recombinant alpha2beta2gamma3 heterotrimeric complex of human AMP-activated protein kinase. Protein Expression and Purification, 73, 189–197.

    Article  CAS  Google Scholar 

  25. Gu, Z., Weidenhaupt, M., Ivanova, N., Pavlov, M., Xu, B., Su, Z. G., & Janson, J. C. (2002). Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Protein Expression and Purification, 25, 174–179.

    Article  CAS  Google Scholar 

  26. Vincent, P., Dieryck, W., Maneta-Peyret, L., Moreau, P., Cassagne, C., & Santarelli, X. (2004). Chromatographic purification of an insoluble histidine tag recombinant Ykt6p SNARE from Arabidopsis thaliana over-expressed in E. coli. Journal of Chromatography. B: Analytical Technologies in the Biomedical andLife Sciences, 808, 83–89.

    Article  CAS  Google Scholar 

  27. Dolgikh, V. V., Senderskiy, I. V., Tetz, G. V., & Tetz, V. V. (2014). Optimization of the protocol for the isolation and refolding of the extracellular domain of HER2 expressed in Escherichia coli. Acta Naturae, 6, 106–109.

    CAS  Google Scholar 

  28. Derewenda, Z. S. (2004). The use of recombinant methods and molecular engineering in protein crystallization. Methods, 34, 354–363.

    Article  CAS  Google Scholar 

  29. Bucher, M. H., Evdokimov, A. G., & Waugh, D. S. (2002). Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallographica Section D: Biological Crystallography, 58, 392–397.

    Article  Google Scholar 

  30. Hartl, D. L., Moriyama, E. N., & Sawyer, S. A. (1994). Selection intensity for codon bias. Genetics, 138, 227–234.

    CAS  Google Scholar 

  31. Gustafsson, C., Govindarajan, S., & Minshull, J. (2004). Codon bias and heterologous protein expression. Trends in Biotechnology, 22, 346–353.

    Article  CAS  Google Scholar 

  32. Hannig, G., & Makrides, S. C. (1998). Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 16, 54–60.

    Article  CAS  Google Scholar 

  33. Karlin, S., Mrazek, J., & Campbell, A. M. (1998). Codon usages in different gene classes of the Escherichia coli genome. Molecular Microbiology, 29, 1341–1355.

    Article  CAS  Google Scholar 

  34. Tuller, T., Waldman, Y. Y., Kupiec, M., & Ruppin, E. (2010). Translation efficiency is determined by both codon bias and folding energy. Proceedings of the National Academy of Sciences of the United States of America, 107, 3645–3650.

    Article  CAS  Google Scholar 

  35. Wood, C. R., Boss, M. A., Patel, T. P., & Emtage, J. S. (1984). The influence of messenger RNA secondary structure on expression of an immunoglobulin heavy chain in Escherichia coli. Nucleic Acids Research, 12, 3937–3950.

    Article  CAS  Google Scholar 

  36. Schoner, B. E., Hsiung, H. M., Belagaje, R. M., Mayne, N. G., & Schoner, R. G. (1984). Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 81, 5403–5407.

    Article  CAS  Google Scholar 

  37. Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E., & Breaker, R. R. (2003). An mRNA structure that controls gene expression by binding S-adenosylmethionine. Natural Structural Biology, 10, 701–707.

    Article  CAS  Google Scholar 

  38. Iserentant, D., & Fiers, W. (1980). Secondary structure of mRNA and efficiency of translation initiation. Gene, 9, 1–12.

    Article  CAS  Google Scholar 

  39. de Smit, M. H., & van Duin, J. (1990). Control of prokaryotic translational initiation by mRNA secondary structure. Progress in Nucleic Acid Research and Molecular Biology, 38, 1–35.

    Article  Google Scholar 

  40. Shirano, Y., & Shibata, D. (1990). Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Letters, 271, 128–130.

    Article  CAS  Google Scholar 

  41. de Groot, N. S., & Ventura, S. (2006). Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Letters, 580, 6471–6476.

    Article  Google Scholar 

  42. Weickert, M. J., Pagratis, M., Curry, S. R., & Blackmore, R. (1997). Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli. Applied and Environment Microbiology, 63, 4313–4320.

    CAS  Google Scholar 

  43. Onodera, O., Roses, A. D., Tsuji, S., Vance, J. M., Strittmatter, W. J., & Burke, J. R. (1996). Toxicity of expanded polyglutamine-domain proteins in Escherichia coli. FEBS Letters, 399, 135–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Natural Science Foundation of Liaoning, China (2013023037). This article did not contain any studies with human subjects. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declared that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Zhen or Jie Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Feng, X., Qu, J. et al. Expression and Characterization of the Extracellular Domain of Human HER2 from Escherichia Coli, and Production of Polyclonal Antibodies Against the Recombinant Proteins. Appl Biochem Biotechnol 176, 1029–1043 (2015). https://doi.org/10.1007/s12010-015-1627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1627-x

Keywords

Navigation