Skip to main content
Log in

Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hashimoto, T., Taniguchi, Y., Kameda, T., Tamada, Y., & Kurosu, H. (2015). Changes in the properties and protein structure of silk fibroin molecules in autoclaved fabrics. Polymer Degradation and Stability, 112, 20–26.

    Article  CAS  Google Scholar 

  2. Freddi, G., Mossotti, R., & Innocenti, R. (2003). Degumming of silk fabric with several proteases. Journal of Biotechnology, 106, 101–112.

    Article  CAS  Google Scholar 

  3. Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 31, 991–1007.

    Article  Google Scholar 

  4. Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., Volloch, V., & Kaplan, D. (2004). Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research. Part A, 71, 528–537.

    Article  Google Scholar 

  5. Omenetto, F. G., & Kaplan, D. L. (2010). New opportunities for an ancient material. Science, 329, 528–531.

    Article  CAS  Google Scholar 

  6. Du, X., Wang, Y., Yuan, L., Weng, Y., Chen, G., & Hu, Z. (2014). Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films. Colloids and Surfaces B: Biointerfaces, 122, 79–84.

    Article  CAS  Google Scholar 

  7. Sionkowska, A., & Planecka, A. (2013). Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. Journal of Molecular Liquids, 178, 5–14.

    Article  CAS  Google Scholar 

  8. Kundu, J., Poole-warren, L. A., Martens, P., & Kundu, S. C. (2012). Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomaterialia, 8, 1720–1729.

    Article  CAS  Google Scholar 

  9. Meinel, A. J., Kubow, K. E., Klotzsch, E., Garcia-Fuentes, M., Smith, M. L., Vogel, V., Merkle, H. P., & Meinel, L. (2009). Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials, 30, 3058–3067.

    Article  CAS  Google Scholar 

  10. Zhang, Y. Q., Zhou, W. L., Shen, W. D., Chen, Y. H., Zha, X. M., Shirai, K., & Kiguchi, K. (2005). Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. Journal of Biotechnology, 120, 315–326.

    Article  CAS  Google Scholar 

  11. Imsombut, T., Srisuwan, Y., Srihanam, P., & Baimark, Y. (2010). Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method. Powder Technology, 203, 603–608.

    Article  CAS  Google Scholar 

  12. Wang, J., Wei, Y., Yi, H., Liu, Z., Sun, D., & Zhao, H. (2014). Cytocompatibility of a silk fibroin tubular scaffold. Materials Science and Engineering: C, 34, 429–436.

    Article  Google Scholar 

  13. Wang, J., Hu, W., Liu, Q., & Zhang, S. (2011). Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces, 85, 241–247.

    Article  CAS  Google Scholar 

  14. Wang, P., Yu, M. L., Cui, L., Yuan, J. G., Wang, Q., & Fan, X. R. (2014). Modification of Bombyx mori silk fabrics by tyrosinase-catalyzed grafting of chitosan. Engineering in Life Science, 14, 211–217.

    Article  Google Scholar 

  15. Faccio, G., Kruus, K., Saloheimo, M., & Thony-Meyer, L. (2012). Bacterial tyrosinases and their applications. Process Biochemistry, 47, 1749–1760.

    Article  CAS  Google Scholar 

  16. Kang, G. D., Lee, K. H., Ki, C. S., & Park, Y. H. (2004). Crosslinking reaction of phenolic side chains in silk fibroin by tyrosinase. Fibers and Polymers, 5, 234–238.

    Article  CAS  Google Scholar 

  17. Freddi, G., Anghileri, A., Sampaio, S., Buchert, J., Monti, P., & Taddei, P. (2006). Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. Journal of Biotechnology, 125, 281–294.

    Article  CAS  Google Scholar 

  18. Debelle, L., & Alix, A. J. (1999). The structures of elastins and their function. Biochimie, 81, 981–994.

    Article  CAS  Google Scholar 

  19. Daamena, W. F., Veerkampa, J. H., van Hestb, J. C. M., & van Kuppevelta, T. H. (2007). Elastin as a biomaterial for tissue engineering. Biomaterials, 28, 4378–4398.

    Article  Google Scholar 

  20. Wise, S. G., Mithieux, S. M., & Weiss, A. S. (2009). Engineered tropoelastin and elastin-based biomaterials. Advances in Protein Chemistry and Structural Biology, 78, 1–24.

    Article  CAS  Google Scholar 

  21. Annabi, N., Mithieux, S. M., Weiss, A. S., & Dehghani, F. (2009). The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials, 30, 1–7.

    Article  CAS  Google Scholar 

  22. Miyamoto, K., Atarashi, M., Kadozono, H., Shibata, M., Koyama, Y., Okai, M., Inakuma, A., Kitazono, E., Kaneko, H., Takebayashi, T., & Horiuchi, T. (2009). Creation of cross-linked electrospun isotypic-elastin fibers controlled cell-differentiation with new cross-linker. International Journal of Biological Macromolecules, 45, 33–41.

    Article  CAS  Google Scholar 

  23. Vasconcelos, A., Gomes, A. C., & Cavaco-Paulo, A. (2012). Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 18, 3049–3060.

    Article  Google Scholar 

  24. Li, X. Q., Wang, H. F., Rong, H. L., Li, W. H., Luo, Y., Tian, K., Quan, D. Q., Wang, Y. A., & Jiang, L. (2015). Effect of composite SiO2@AuNPs on wound healing: in vitro and vivo studies. Journal of Colloid and Interface Science, 445, 312–319.

    Article  CAS  Google Scholar 

  25. Jus, S., Stachel, I., Schloegl, W., Pretzler, M., Friess, W., Meyer, M., Gruenberger, R. B., & Güebitz, G. M. (2011). Cross-linking of collagen with laccases and tyrosinases. Materials Science and Engineering: C, 31, 1068–1077.

    Article  CAS  Google Scholar 

  26. Sousa, F., Güebitz, G. M., & Kokol, V. (2009). Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochemistry, 44, 309–312.

    Article  Google Scholar 

  27. Ito, S., & Nicol, J. A. (1977). A new amino acid, 3-(2,5-SS-dicysteinyl-3,4-dihydroxyphenyl)alanine, from the tapetum lucidum of the gar (Lepisosteidae) and its enzymic synthesis. Biochemical Journal, 161, 499–507.

    Article  CAS  Google Scholar 

  28. Jus, S., Kokol, V., & Güebitz, G. M. (2008). Tyrosinase-catalysed coupling of functional molecules onto protein fibres. Enzyme and Microbial Technology, 42, 535–542.

    Article  CAS  Google Scholar 

  29. Monogioudi, E., Creusot, N., Kruus, K., Gruppen, H., Buchert, J., & Mattinen, M. L. (2009). Cross-linking of β-casein by Trichoderma reesei tyrosinase and Streptoverticillium mobaraense transglutaminase followed by SEC-MALLS. Food Hydrocolloids, 23, 2008–2015.

    Article  CAS  Google Scholar 

  30. Sampaio, S., Taddei, P., Monti, P., Buchert, J., & Freddi, G. (2005). Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. Journal of Biotechnology, 116, 21–33.

    Article  CAS  Google Scholar 

  31. Hu, X., Kaplan, D., & Cebe, P. (2007). Effect of water on the thermal properties of silk fibroin. Thermochimica Acta, 461, 137–144.

    Article  CAS  Google Scholar 

  32. Fan, S., Zhang, Y. P., Shao, H. L., & Hu, X. C. (2013). Electrospun regenerated silk fibroin mats with enhanced mechanical properties. International Journal of Biological Macromolecules, 56, 83–88.

    Article  CAS  Google Scholar 

  33. O’Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26, 433–441.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51373071) and Program for New Century Excellent Talents in University (NCET-12-0883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Zhu, X., Wang, P. et al. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold. Appl Biochem Biotechnol 178, 1363–1376 (2016). https://doi.org/10.1007/s12010-015-1952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1952-0

Keywords

Navigation