Skip to main content
Log in

Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) and polyhydroxyalkanoate (PHA) have received increasing attention in recent years because of their unique biodegradability and biocompatibility. Studies on SF or PHA-based materials that are intended for use as biomaterials have attracted great attention, but few studies have been conducted on SF/PHA composite materials. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymers with varying ratios of the 3-hydroxyvalerate (HV) component are the most widely used member of PHAs. In this study, SF/PHBV composite nanofibers were prepared by electrospinning. The stability of the mixed solution of SF/PHBV was explored first. Fourier transform infrared (FTIR) spectroscopy was used to study the composition of the precipitates caused by mixing the SF solution with the PHBV solution. The morphology of the electrospun SF/PHBV composite nanofibers was observed by scanning electron microscopy (SEM). The average diameters of the pure PHBV, pure SF, SF/PHBV (the content ratio of solute SF/PHBV (w/w) was 10/1), and SF/PHBV (the content ratio of solute SF/PHBV (w/w) was 4/1) nanofibers were 495.12 ± 82.27, 67.88 ± 14.52, 171.10 ± 40.38, and 149.70 ± 28.57 nm, respectively. To discuss the influence of the electrospinning parameters on the spinning stability and morphology of the electrospun SF/PHBV (10/1) composite nanofibers, a univariate analysis experiment was designed. When the applied voltage was 15 kV, the feeding rate was 0.3 mL/h, and the tip-to-collector distance was 13 cm, the spinning stability, uniformity and formability of the SF/PHBV (10/1) composite nanofibers were excellent. In addition to FTIR analysis, X-ray diffraction (XRD) was also used to explore the structure of the electrospun SF/PHBV composite nanofibers. As the content of PHBV increased, the crystallinity of the SF/PHBV composite nanofibers could be improved. The thermogravimetric analysis (TGA) results indicated that the thermal stability of SF was better than that of PHBV. As the content of PHBV increased, the thermal stability of the SF/PHBV composite nanofibers would decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv. 28, 325 (2010).

    Article  CAS  Google Scholar 

  2. S. Chen, D. Han, and H. Hou, Polym. Adv. Technol. 22, 295 (2011).

    Article  CAS  Google Scholar 

  3. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules 3, 232 (2002).

    Article  CAS  Google Scholar 

  4. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005).

    Article  CAS  Google Scholar 

  5. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer 49, 5603 (2008).

    Article  CAS  Google Scholar 

  6. S. M. Yukseloglu, N. Sokmen, and S. Canoglu, Microelectron. Eng. 146, 43 (2015).

    Article  CAS  Google Scholar 

  7. Y. Kishimoto, H. Morikawa, S. Yamanaka, and Y. Tamada, Mater. Sci. Eng., C 73, 498 (2017).

    Article  CAS  Google Scholar 

  8. B. Marelli, A. Alessandrino, S. Fare, G. Freddi, D. Mantovani, and M. C. Tanzi, Acta Biomater. 6, 4019 (2010).

    Article  CAS  Google Scholar 

  9. V. Catto, S. Farè, I. Cattaneo, M. Figliuzzi, A. Alessandrino, G. Freddi, A. Remuzzi, and M. C. Tanzi, Mater. Sci. Eng., C 54, 101 (2015).

    Article  CAS  Google Scholar 

  10. C. Marcolin, L. Draghi, M. C. Tanzi, and S. Farè. J. Mater. Sci.: Mater. Med. 28, 80 (2017).

    Article  Google Scholar 

  11. S. E. Wharram, X. Zhang, D. L. Kaplan, and S. P. McCarthy, Macromol. Biosci. 10, 246 (2010).

    Article  CAS  Google Scholar 

  12. H. W. Ju, O. J. Lee, J. M. Lee, B. M. Moon, H. J. Park, Y. R. Park, M. C. Lee, S. H. Kim, J. R. Chao, C. S. Ki, and C. H. Park, Int. J. Biol. Macromol. 85, 29 (2016).

    Article  CAS  Google Scholar 

  13. Y. R. Park, H. W. Ju, J. M. Lee, D. K. Kim, O. J. Lee, B. M. Moon, H. J. Park, J. Y. Jeong, Y. K. Yeon, and C. H. Park, Int. J. Biol. Macromol. 93, 1567 (2016).

    Article  CAS  Google Scholar 

  14. F. A. Sheikh, H. W. Ju, J. M. Lee, B. M. Moon, H. J. Park, O. J. Lee, J. H. Kim, D. K. Kim, and C. H. Park, Nanomedicine (N. Y., NY, U. S.) 11, 681 (2015).

    CAS  Google Scholar 

  15. K. Wei, Y. Li, K. O. Kim, Y. Nakagawa, B. S. Kim, K. Abe, G. Q. Chen, and I. S. Kim, J. Biomed. Mater. Res., Part A 97, 272 (2011).

    Google Scholar 

  16. S. Aznar-Cervantes, A. Pagán, J. G. Martínez, A. Bernabeu-Esclapez, T. F. Otero, L. Meseguer-Olmo, J. I. Paredes, and J. L. Cenis, Mater. Sci. Eng., C 79, 315 (2017).

    Article  CAS  Google Scholar 

  17. C. Mangeon, S. Mahouche-Chergui, D. L. Versace, M. Guerrouache, B. Carbonnier, V. Langlois, and E. Renard, React. Funct. Polym. 89, 18 (2015).

    Article  CAS  Google Scholar 

  18. D. Grande, J. Ramier, D. L. Versace, E. Renard, and V. Langlois, New Biotechnol. 37, 129 (2017).

    Article  CAS  Google Scholar 

  19. W. Yu, C. H. Lan, S. J. Wang, P. F. Fang, and Y. M. Sun, Polymer 51, 2403 (2010).

    Article  CAS  Google Scholar 

  20. R. F. Canadas, J. M. B. T. Cavalheiro, J. D. T. Guerreiro, M. C. M. D. Almeida, E. Pollet, C. L. Silva, M. M. R. Fonseca, and F. C. Ferreira. Int. J. Biol. Macromol. 71, 131 (2014).

    Article  CAS  Google Scholar 

  21. T. H. Ying, D. Ishii, A. Mahara, S. Murakami, T. Yamaoka, K. Sudesh, R. Samian, M. Fujita, M. Maeda, and T. Iwata, Biomaterials 29, 1307 (2008).

    Article  CAS  Google Scholar 

  22. K. H. K. Chan, S. Y. Wong, X. Li, Y. Z. Zhang, P. C. Lim, C. T. Lim, M. Kotaki, and C. B. He, J. Phys. Chem. B 113, 13179 (2009).

    Article  CAS  Google Scholar 

  23. J. Ramier, M. B. Boubaker, M. Guerrouache, V. Langlois, D. Grande, and E. Renard, J. Polym. Sci., Part A: Polym. Chem. 52, 816 (2014).

    Article  CAS  Google Scholar 

  24. P. Zou, H. Liu, Y. Li, J. Huang, and Y. Dai, Mater. Lett. 179, 109 (2016).

    Article  CAS  Google Scholar 

  25. M. Kouhi, M. P. Prabhakaran, M. Shamanian, M. Fathi, M. Morshed, and S. Ramakrishna, Compos. Sci. Technol. 121, 115 (2015).

    Article  CAS  Google Scholar 

  26. K. M. Sajesh, K. Kiran, S. V. Nair, and R. Jayakumar, Composites, Part B 99, 445 (2016).

    Article  CAS  Google Scholar 

  27. G. Mutlu, S. Calamak, K. Ulubayram, and E. Guven, J. Drug Delivery Sci. Technol. 43, 185 (2018).

    Article  CAS  Google Scholar 

  28. Y. Xu, L. Zou, H. Lu, Y. Wei, J. Hua, and S. Chen, J. Mater. Sci. 51, 5695 (2016).

    Article  CAS  Google Scholar 

  29. M. J. Fabra, A. López-Rubio, J. Ambrosio-Martin, and J. M. Lagaron, Food Hydrocolloids 61, 261 (2016).

    Article  CAS  Google Scholar 

  30. M. J. Fabra, A. López-Rubio, and J. M. Lagaron, Food Bioprocess Technol. 8, 2330 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Juan Pan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng-Yang He, -Chen, Q., Wu, YT. et al. Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability. Polym. Sci. Ser. A 62, 648–659 (2020). https://doi.org/10.1134/S0965545X2006005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X2006005X

Navigation