Skip to main content
Log in

Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inteins are protein segments embedded in frame within a precursor sequence that catalyze a self-excision reaction and ligate the flanking sequences with a standard peptide bond. Split inteins are expressed as two separate polypeptide fragments and trans-splice upon subunit association. Split inteins have found use in biotechnology applications but their use in postsynthetic domain assembly in vivo has been limited to the ligation of two protein domains. Alternatively, they have been used to splice three domains and fragments in vitro. To further develop split intein-based applications in vivo, we have designed a cell-based assay for the postsynthetic splicing of three protein domains using orthogonal split inteins. Using naturally and artificially split inteins, NpuDnaE and SspDnaB, we show that a multidomain protein of 128 kDa can be assembled in Escherichia coli from individually expressed domains. In the current system, the main bottleneck in achieving high yield of tandem trans-spliced product appears to be the limited solubility of the SspDnaB precursors. Optimizing protein solubility should be important to achieve efficient combinatorial synthesis of protein domains in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shah, N. H., & Muir, T. W. (2014). Inteins: nature’s gift to protein chemists. Chemical Science, 5, 446–461.

    Article  CAS  Google Scholar 

  2. Topilina, N. I. and Mills, K. V. (2014). Recent advances in in vivo applications of intein-mediated protein splicing. Mobile DNA, 5, 5

  3. Southworth, M. W., Amaya, K., Evans, T. C., Xu, M. Q. and Perler, F. B (1999). Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques, 27, 110–114, 116, 118–120

  4. Wood, D. W., Wu, W., Belfort, G., Derbyshire, V., & Belfort, M. (1999). A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol, 17, 889–892.

    Article  CAS  Google Scholar 

  5. Wu, W. Y., Mee, C., Califano, F., Banki, R., & Wood, D. W. (2006). Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc, 1, 2257–2262.

    Article  CAS  Google Scholar 

  6. Lew, B. M., Mills, K. V., & Paulus, H. (1999). Characteristics of protein splicing in trans mediated by a semisynthetic split intein. Biopolymers, 51, 355–362.

    Article  CAS  Google Scholar 

  7. Perler, F. B. (2002). InBase: the Intein Database. Nucleic Acids Res, 30, 383–384.

    Article  CAS  Google Scholar 

  8. Giriat, I., & Muir, T. W. (2003). Protein semi-synthesis in living cells. J Am Chem Soc, 125, 7180–7181.

    Article  CAS  Google Scholar 

  9. Kwon, Y., Coleman, M. A., & Camarero, J. A. (2006). Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl, 45, 1726–1729.

    Article  CAS  Google Scholar 

  10. Wong, S. S., Kotera, I., Mills, E., Suzuki, H., & Truong, K. (2012). Split-intein mediated re-assembly of genetically encoded Ca(2+) indicators. Cell Calcium, 51, 57–64.

    Article  CAS  Google Scholar 

  11. Ramirez, M., Guan, D., Ugaz, V., & Chen, Z. (2013). Intein-triggered artificial protein hydrogels that support the immobilization of bioactive proteins. J Am Chem Soc, 135, 5290–5293.

    Article  CAS  Google Scholar 

  12. Guan, D., Ramirez, M., & Chen, Z. (2013). Split intein mediated ultra-rapid purification of tagless protein (SIRP). Biotechnol and Bioeng, 110, 2471–2481.

    Article  CAS  Google Scholar 

  13. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C., & Benkovic, S. J. (1999). Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A, 96, 13,638–13,643.

    Article  CAS  Google Scholar 

  14. Bionda, N., Cryan, A. L., & Fasan, R. (2014). Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria. ACS Chem Biol, 9, 2008–2013.

    Article  CAS  Google Scholar 

  15. Evans Jr., T. C., Benner, J., & Xu, M. Q. (1999). The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem, 274, 3923–3926.

    Article  CAS  Google Scholar 

  16. Mootz, H. D. (2009). Split inteins as versatile tools for protein semisynthesis. Chembiochem, 10, 2579–2589.

    Article  CAS  Google Scholar 

  17. Muralidharan, V., & Muir, T. W. (2006). Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Meth, 3, 429–438.

    Article  CAS  Google Scholar 

  18. Yamazaki, T., Otomo, T., Oda, N., Kyogoku, Y., Uegaki, K., Ito, N., Ishino, Y., & Nakamura, H. (1998). Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J Am Chem Soc, 120, 5591–5592.

    Article  CAS  Google Scholar 

  19. Muona, M., Aranko, A. S., Raulinaitis, V., & Iwai, H. (2010). Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc, 5, 574–587.

    Article  CAS  Google Scholar 

  20. Shi, J., & Muir, T. W. (2005). Development of a Tandem Protein Trans-Splicing System Based on Native and Engineered Split Inteins. J Am Chem Soc, 127, 6198–6206.

    Article  CAS  Google Scholar 

  21. Shah, N. H., Vila-Perello, M., & Muir, T. W. (2011). Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angewandte Chemie (International ed. in English), 50, 6511–6515.

    Article  CAS  Google Scholar 

  22. Aranko, A. S., Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A., & Iwai, H. (2014). Structure-based engineering and comparison of novel split inteins for protein ligation. Mol Biosyst, 10, 1023–1034.

    Article  CAS  Google Scholar 

  23. Zuger, S., & Iwai, H. (2005). Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotech, 23, 736–740.

    Article  Google Scholar 

  24. Brenzel, S., Kurpiers, T., & Mootz, H. D. (2006). Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry, 45, 1571–1578.

    Article  CAS  Google Scholar 

  25. Iwai, H., Zuger, S., Jin, J., & Tam, P. H. (2006). Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett, 580, 1853–1858.

    Article  CAS  Google Scholar 

  26. Zettler, J., Schutz, V., & Mootz, H. D. (2009). The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett, 583, 909–914.

    Article  CAS  Google Scholar 

  27. Wu, H., Xu, M. Q., & Liu, X. Q. (1998). Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta, 1387, 422–432.

    Article  CAS  Google Scholar 

  28. Sun., W., Yang, J. and Liu, X. Q. (2004). Synthetic two-piece and three-piece split inteins for protein trans-splicing. J Biol Chem, 279, 35,281–35,286

  29. Wu, H., Hu, Z., & Liu, X. Q. (1998). Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A, 95, 9226–9231.

    Article  CAS  Google Scholar 

  30. Caspi, J., Amitai, G., Belenkiy, O., & Pietrokovski, S. (2003). Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol, 50, 1569–1577.

    Article  CAS  Google Scholar 

  31. Shah, N. H., Dann, G. P., Vila-Perelló, M., Liu, Z., & Muir, T. W. (2012). Ultrafast Protein Splicing is Common among Cyanobacterial Split Inteins: Implications for Protein Engineering. J Am Chem Soc, 134, 11,338–11,341.

    Article  CAS  Google Scholar 

  32. Demonte, D., Dundas, C. M., & Park, S. (2014). Expression and purification of soluble monomeric streptavidin in Escherichia coli. Appl Microbiol Biotechnol, 98, 6285–6295.

    Article  CAS  Google Scholar 

  33. Lim, K. H., Huang, H., Pralle, A., & Park, S. (2013). Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng, 110, 57–67.

    Article  CAS  Google Scholar 

  34. Cheriyan, M., Pedamallu, C. S., Tori, K., & Perler, F. (2013). Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem, 288, 6202–6211.

    Article  CAS  Google Scholar 

  35. Shah, N. H., Eryilmaz, E., Cowburn, D., & Muir, T. W. (2013). Extein Residues Play an Intimate Role in the Rate-Limiting Step of Protein Trans-Splicing. J Am Chem Soc, 135, 5839–5847.

    Article  CAS  Google Scholar 

  36. Cane, D. E., Walsh, C. T., & Khosla, C. (1998). Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 282, 63–68.

    Article  CAS  Google Scholar 

  37. Baltz, R. H. (2006). Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol, 24, 1533–1540.

    Article  CAS  Google Scholar 

  38. Fischbach, M. A., Lai, J. R., Roche, E. D., Walsh, C. T., & Liu, D. R. (2007). Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A, 104, 11,951–11,956.

    Article  CAS  Google Scholar 

  39. Evans, B. S., Chen, Y., Metcalf, W. W., Zhao, H., & Kelleher, N. L. (2011). Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem Biol, 18, 601–607.

    Article  CAS  Google Scholar 

  40. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison 3rd, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth, 6, 343–345.

  41. Engler, C., Kandzia, R. and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3, e3647

  42. Carvajal-Vallejos, P., Pallisse, R., Mootz, H. D., & Schmidt, S. R. (2012). Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem, 287, 28,686–28,696.

    Article  CAS  Google Scholar 

  43. Aranko, A. S., Wlodawer, A., & Iwai, H. (2014). Nature’s recipe for splitting inteins. Protein Eng Des Sel, 27, 263–271.

    Article  CAS  Google Scholar 

  44. Smialowski, P., Martin-Galiano, A. J., Mikolajka, A., Girschick, T., Holak, T. A., & Frishman, D. (2007). Protein solubility: sequence based prediction and experimental verification. Bioinformatics, 23, 2536–2542.

    Article  CAS  Google Scholar 

  45. Huang, H. L., Charoenkwan, P., Kao, T. F., Lee, H. C., Chang, F. L., Huang, W. L., Ho, S. J., Shu, L. S., Chen, W. L. and Ho, S. Y. (2012). Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition. BMC Bioinformatics, 13 Suppl 17, S3

  46. Selgrade, D. F., Lohmueller, J. J., Lienert, F., & Silver, P. A. (2013). Protein Scaffold-Activated Protein Trans-Splicing in Mammalian Cells. J Am Chem Soc, 135, 7713–7719.

    Article  CAS  Google Scholar 

  47. Thompson, K. E., Bashor, C. J., Lim, W. A., & Keating, A. E. (2012). SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol, 1, 118–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Science Foundation (grant No. 1264051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Park.

Electronic Supplementary Material

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demonte, D., Li, N. & Park, S. Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins. Appl Biochem Biotechnol 177, 1137–1151 (2015). https://doi.org/10.1007/s12010-015-1802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1802-0

Keywords

Navigation