Skip to main content
Log in

From Natural Products to Drugs for Epimutation Computer-Aided Drug Design

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The epimutational event, i.e., ectopic methylation in tumor suppressor genes, can lead to gene silencing, thus promoting prognosis of cancer. The progression of DNA methylation is a cycle of demethylation, de novo methylation, and maintenance methylation. The enzyme responsible for maintenance of methylation status is DNA methyltransferase 1 (DNMT1), the continuous activity of which is required to maintain the pattern of epimutation; thus, its inhibition is a promising strategy for the treatment of cancer. To the best of our knowledge, this study is the first to focus on the recently developed crystal structure of the catalytic site of DNMT1. Here in this study, we have used the crystal structure for the development of non-nucleoside DNMT1 inhibitors using virtual screening (VS), absorption, distribution, metabolism, elimination/toxicology analysis, and molecular docking studies. In this study, VS was carried out on 48,531 natural products to create a subset of lead-like natural products. Three of them were found to form hydrogen bonds with the catalytic site of the DNMT1 (Cys 1226). Thus, this study adumbrates potential lead compounds for treatment of epimutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC), Globacon 2002 in World Health Organization (WHO) and International Union Against Cancer (UICC) Report (2005) Global action against cancer. pp.1.

  2. Jones, P. A., & Baylin, S. B. (2007). Cell, 128, 683–692.

    Article  CAS  Google Scholar 

  3. Banno, K., Kisu, I., Yanokura, M., Tsuji, K., Masuda, K., Ueki, A., et al. (2012). International Journal of Oncology, 41, 793–797.

    CAS  Google Scholar 

  4. Brueckner, B., & Lyko, F. (2004). Trends in Pharmacological Sciences, 25(11), 551–554.

    Article  CAS  Google Scholar 

  5. Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). Cancer Research, 61(8), 3225–3229.

    CAS  Google Scholar 

  6. Das, P. M., & Singal, R. J. (2004). Journal of Clinical Oncology, 15(22), 4632–4642.

    Article  Google Scholar 

  7. Sippl, W., & Jung, M. (2009). Epigenetic targets in drug discovery. London: Wiley-VCH.

    Book  Google Scholar 

  8. Bestor, T., Laudano, A., Mattaliano, R., & Ingram, V. (1988). Journal of Molecular Biology, 203, 971–983.

    Article  CAS  Google Scholar 

  9. Robertson, K. D. (2001). Oncogene, 20(24), 3139–3155.

    Article  CAS  Google Scholar 

  10. Baylin, S. B., & Herman, J. G. (2000). Trends in Genetics, 16, 168–174.

    Article  CAS  Google Scholar 

  11. Huang, Y. W., Kuo, C. T., Stoner, K., Huang, T. H., & Wang, L. S. (2011). FEBS Letters, 585, 2129–2136.

    Article  CAS  Google Scholar 

  12. Lyko, F., & Brown, R. (2005). Journal of the National Cancer Institute, 97(20), 1498–1506.

    Article  CAS  Google Scholar 

  13. Medina-Franco, J. L., & Caulfield, T. (2011). Drug Discovery Today, 9–10, 418–425.

    Article  Google Scholar 

  14. Fang, M. Z. W., Ai, Y., Hou, N., Sun, Z., Lu, Y., Welsh, H., et al. (2003). Cancer Research, 63, 7563–7570.

    CAS  Google Scholar 

  15. Singh, N., Dueñas-González, A., Lyko, F., & Medina-Franco, J. L. (2009). ChemMedChem, 4, 792–799.

    Article  CAS  Google Scholar 

  16. Liu, Z. F., Xie, Z. L., Jones, W., Pavlovicz, R. E., Liu, S. J., Yu, J. H., et al. (2009). Bioorganic & Medicinal Chemistry Letters, 19, 706–709.

    Article  Google Scholar 

  17. Lee, W. J., & Zhu, B. T. (2006). Carcinogenesis, 27, 269–277.

    Article  CAS  Google Scholar 

  18. Kirchmair, J., Distinto, S., Schuster, D., Spitzer, G., Langer, T., & Wolber, G. (2008). Current Medicinal Chemistry, 15, 2040–2053.

    Article  CAS  Google Scholar 

  19. Siedlecki, P. G., Boy, R., Musch, T., Brueckner, B., Suhai, S., Lyko, F., et al. (2006). Journal of Medicinal Chemistry, 49, 678–683.

    Article  CAS  Google Scholar 

  20. Kuck, D., Singh, N., Lyko, F., & Medina-Franco, J. L. (2010). Bioorganic & Medicinal Chemistry, 18, 822–829.

    Article  CAS  Google Scholar 

  21. Suzuki, T., Tanaka, R., Hamada, S., Nakagawa, H., & Miyata, N. (2010). Bioorganic & Medicinal Chemistry Letters, 2011, 1124–1127.

    Article  Google Scholar 

  22. Yu, N., & Wang, M. (2008). Current Medicinal Chemistry, 15, 1350–1375.

    Article  CAS  Google Scholar 

  23. Fandy, T. E. (2009). Current Medicinal Chemistry, 16, 2075–2085.

    Article  CAS  Google Scholar 

  24. Siedlecki, P., Boy, R. G., Comagic, S., Schirrmacher, R., Wiessler, M., Zielenkiewicz, P., et al. (2003). Biochemical and Biophysical Research Communications, 306, 558–563.

    Article  CAS  Google Scholar 

  25. Hashimoto, H. & Cheng, X. (2012). Structure of human DNMT1 (residues 600–1600) in complex with Sinefungin. http://www.rcsb.org/pdb/explore/explore.do?structureId=3SWR. Accessed 2012

  26. Hodgson, J. (2001). Nature Biotechnology, 19(8), 722–726.

    Article  CAS  Google Scholar 

  27. Davis, A. M., & Riley, R. J. (2004). Current Opinion in Chemical Biology, 8(4), 378–386.

    Article  CAS  Google Scholar 

  28. Lee, S. K., Chang, G. S., Lee, I. H., Chung, J. E., Sung, K. Y., & No, K. T. (2004). EuroQSAR 2004. 9, 5–10, Istanbul, Turkey.

  29. Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung, J. E., & No, K. T. (2003). Designing drugs and crop protectants: processes, problems and solutions. In M. G. Ford, D. Livingstone, J. Dearden, & H. V. de Waterbeemd (Eds.), Web-based program for rapid prediction of physic-chemical, drug absorption and drug-like properties (1st ed., pp. 418–420). Boston: Blackwell Publishing.

    Google Scholar 

  30. Van de Waterbeemd, H., & Gifford, E. (2003). Nature Reviews Drug Discovery, 2(3), 192–204.

    Article  Google Scholar 

  31. Trott, O., & Olson, A. J. (2010). Journal of Computational Chemistry, 31(2), 455–461.

    CAS  Google Scholar 

  32. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., et al. (2009). Journal of Computational Chemistry, 30(16), 2785–2791.

    Article  CAS  Google Scholar 

  33. Accelrys Software Inc. (2012). Discovery studio modeling environment, Release 3.5. San Diego: Accelrys Software Inc.

    Google Scholar 

  34. Medina-Franco, J. L., Lopez-Vallejo, F., Kuck, D., & Lyko, F. (2011). Molecular Diversity, 15, 293–304.

    Article  CAS  Google Scholar 

  35. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Advanced Drug Delivery Reviews, 46(1-3), 3–26.

    Article  CAS  Google Scholar 

  36. Zhoa, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershah, P. J., Luscombe, C. N., et al. (2001). Journal of Pharmaceutical Sciences, 90, 749–784.

    Article  Google Scholar 

  37. Van de Waterbeemed, H., Camenisch, G., Folkers, G., Chretien, J. R., & Raevsky, O. A. (1998). Journal of Drug Targeting, 6, 151–165.

    Article  Google Scholar 

  38. Lipinski, C. A. (2004). Drug Discovery Today: Technologies, 4, 337–341.

    Article  Google Scholar 

  39. Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000). European Journal of Pharmaceutical Sciences, 10, 195–204.

    Article  CAS  Google Scholar 

  40. Yazdanian, M., Glynn, S. L., Wright, J. L., & Hawi, A. (1998). Pharmaceutical Research, 15(9), 1490–1494.

    Article  CAS  Google Scholar 

  41. Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., et al. (1999). Journal of Pharmaceutical Sciences, 88, 28–33.

    Article  CAS  Google Scholar 

  42. Yee, S. (1997). Pharmaceutical Research, 14, 763–766.

    Article  CAS  Google Scholar 

  43. Ajay, A., Bemis, G. W., & Murcko, M. A. (1999). Journal of Medicinal Chemistry, 42, 4942–4951.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank VIT University for providing the facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti N. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikan, N.A., Bhavaniprasad, V., Anbarasu, K. et al. From Natural Products to Drugs for Epimutation Computer-Aided Drug Design. Appl Biochem Biotechnol 170, 164–175 (2013). https://doi.org/10.1007/s12010-013-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0158-6

Keywords

Navigation