Skip to main content
Log in

Periplasmic Export of Bile Salt Hydrolase in Escherichia coli by the Twin-Arginine Signal Peptides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bile salt hydrolase (BSH, EC 3.5.1.24) is considered as an ideal way with lower cost and less side effects to release the risk of coronary heart disease caused by hypercholesterolemia. As bile salt hydrolase from Lactobacillus plantarum BBE7 could not be efficiently exported by PelB signal peptide of the general secretory (Sec) pathway, three twin-arginine signal peptides from twin-arginine translocation (Tat) pathway were synthesized, fused with bsh gene, inserted into expression vectors pET-20b(+) and pET-22b(+), and transformed into four different Escherichia coli hosts, respectively. Among the 24 recombinant bacteria obtained, E. coli BL21 (DE3) pLysS (pET-20b(+)-dmsA-bsh) showed the highest BSH activity in periplasmic fraction, which was further increased to 1.21 ± 0.03 U/mL by orthogonal experimental design. And, signal peptide dimethyl sulfoxide reductase subunit DmsA (DMSA) had the best activity of exported BSH. More importantly, the presence of BSH in the periplasm had proven to be caused by the export rather than cell leakage. For the first time, we report the periplasmic expression of BSH by signal peptides from the Tat pathway. This will lay a solid foundation for the purification and biochemical characterization of BSH from the supernatant, and strategies adopted here could be used for the periplasmic expression of other proteins in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Driessen, A. J. M., & Nouwen, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem, 77, 643–667.

    Article  CAS  Google Scholar 

  2. Fisher, A. C., Kim, J. Y., Perez‐Rodriguez, R., Tullman‐Ercek, D., Fish, W. R., Henderson, L. A., & DeLisa, M. P. (2008). Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb Biotechnol, 1, 403–415.

    Article  CAS  Google Scholar 

  3. Meissner, D., Vollstedt, A., van Dijl, J. M., & Freudl, R. (2007). Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Environ Microbiol, 76, 633–642.

    CAS  Google Scholar 

  4. Tullman-Ercek, D., DeLisa, M. P., Kawarasaki, Y., Iranpour, P., Ribnicky, B., Palmer, T., & Georgiou, G. (2007). Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem, 282, 8309–8316.

    Article  CAS  Google Scholar 

  5. Gohlke, U., Pullan, L., McDevitt, C. A., Porcelli, I., De Leeuw, E., Palmer, T., Saibil, H. R., & Berks, B. C. (2005). The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A, 102, 10482–10486.

    Article  CAS  Google Scholar 

  6. Zhu, F.-M., Ji, S.-Y., Zhang, W.-W., Li, W., Cao, B.-Y., & Yang, M.-M. (2008). Development and application of a novel signal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four tat pathway signal peptides from Bacillus subtilis were monitored. Mol Biotechnol, 39, 225–230.

    Article  CAS  Google Scholar 

  7. Yang, C., Freudl, R., Qiao, C., & Mulchandani, A. (2010). Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system. Appl Environ Microbiol, 76, 434–440.

    Article  CAS  Google Scholar 

  8. Kim, G. B., & Lee, B. H. (2005). Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora-a review. Asian-Aust J Anim Sci, 18, 1505–1512.

    Article  CAS  Google Scholar 

  9. Jones, M., Martoni, C., Parent, M., & Prakash, S. (2012). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr, 107, 1505–1513.

    Article  CAS  Google Scholar 

  10. Park, Y. H., Kim, J. G., Shin, Y. W., Kim, H. S., Kim, Y. J., Chun, T., Kim, S. H., & Whang, K. Y. (2008). Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs. Biosci Biotechnol Biochem, 72, 595–600.

    Article  CAS  Google Scholar 

  11. Guo, C. F., & Li, J. Y. (2014). A combination of Tween 80 with CaCl2 enhances the hypocholesterolemic activity of bile salt hydrolase-active Lactobacillus casei F0422 in rats fed a cholesterol-rich diet. J Funct Foods, 9, 131–140.

    Article  CAS  Google Scholar 

  12. Ruiz, L., Margolles, A., & Sanchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol, 4, 396.

    Article  Google Scholar 

  13. Jiang, J., Hang, X., Zhang, M., Liu, X., Li, D., & Yang, H. (2010). Diversity of bile salt hydrolase activities in different Lactobacilli toward human bile salts. Ann Microbiol, 60, 81–88.

    Article  CAS  Google Scholar 

  14. Begley, M., Hill, C., & Gahan, C. G. (2006). Bile salt hydrolase activity in probiotics. Appl Environ Microbiol, 72, 1729–1738.

    Article  CAS  Google Scholar 

  15. Hatakka, K., Mutanen, M., Holma, R., Saxelin, M., & Korpela, R. (2008). Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. J Am Coll Nutr, 27, 441–447.

    Article  CAS  Google Scholar 

  16. Dong, Z., Zhang, J., Lee, B., Li, H., Du, G., & Chen, J. (2012). A bile salt hydrolase gene of Lactobacillus plantarum BBE7 with high cholesterol-removing activity. Eur Food Res Technol, 235, 419–427.

    Article  CAS  Google Scholar 

  17. Robinson, C., Matos, C. F., Beck, D., Ren, C., Lawrence, J., Vasisht, N., & Mendel, S. (2011). Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. Biochim Biophys Acta, 1808, 876–884.

    Article  CAS  Google Scholar 

  18. Balachandran, P., Hollingshead, S. K., Paton, J. C., & Briles, D. E. (2001). The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol, 183, 3108–3116.

    Article  CAS  Google Scholar 

  19. Dong, Z., Zhang, J., Lee, B. H., Li, H., Du, G., & Chen, J. (2013). Secretory expression and characterization of a bile salt hydrolase from Lactobacillus plantarum in Escherichia coli. J Mol Catal B Enzym, 93, 57–64.

    Article  CAS  Google Scholar 

  20. Jana, S., & Deb, J. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol, 67, 289–298.

    Article  CAS  Google Scholar 

  21. Wang, S. D., Guo, G. S., Li, L., Cao, L. C., Tong, L., Ren, G. H., & Liu, Y. H. (2014). Identification and characterization of an unusual glycosyltransferase-like enzyme with beta-galactosidase activity from a soil metagenomic library. Enzym Microb Technol, 57, 26–35.

    Article  CAS  Google Scholar 

  22. Lodola, A., Branduardi, D., De Vivo, M., Capoferri, L., Mor, M., Piomelli, D., & Cavalli, A. (2012). A catalytic mechanism for cysteine N-terminal nucleophile hydrolases, as revealed by free energy simulations. PLoS ONE, 7, e32397.

    Article  CAS  Google Scholar 

  23. Sridevi, N., Vishwe, P., & Prabhune, A. (2009). Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Res Int, 42, 516–520.

    Article  CAS  Google Scholar 

  24. Baradaran, A., Sieo, C. C., Foo, H. L., Illias, R. M., Yusoff, K., & Rahim, R. A. (2013). Cloning and in silico characterization of two signal peptides from Pediococcus pentosaceus and their function for the secretion of heterologous protein in Lactococcus lactis. Biotechnol Lett, 35, 233–238.

    Article  CAS  Google Scholar 

  25. Choo, K. H., & Ranganathan, S. (2008). Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinforma, 9(Suppl 12), S15.

    Article  Google Scholar 

  26. Richter, S., & Bruser, T. (2005). Targeting of unfolded PhoA to the TAT translocon of Escherichia coli. J Biol Chem, 280, 42723–42730.

    Article  CAS  Google Scholar 

  27. Ng, D. T., & Sarkar, C. A. (2013). Engineering signal peptides for enhanced protein secretion from Lactococcus lactis. Appl Environ Microbiol, 79, 347–356.

    Article  CAS  Google Scholar 

  28. Kjærulff, S., & Jensen, M. R. (2005). Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun, 336, 974–982.

    Article  Google Scholar 

  29. Knappskog, S., Ravneberg, H., Gjerdrum, C., Tröβe, C., Stern, B., & Pryme, I. F. (2007). The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol, 128, 705–715.

    Article  CAS  Google Scholar 

  30. Zhang, L., Leng, Q., & Mixson, A. J. (2005). Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. J Gene Med, 7, 354–365.

    Article  CAS  Google Scholar 

  31. Zanen, G., Houben, E. N., Meima, R., Tjalsma, H., Jongbloed, J. D., Westers, H., Oudega, B., Luirink, J., van Dijl, J. M., & Quax, W. J. (2005). Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J, 272, 4617–4630.

    Article  CAS  Google Scholar 

  32. Basu, A., Li, X., & Leong, S. S. (2011). Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol, 92, 241–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Synergetic Innovation Center of Food Safety and Nutrition, the National Natural Science Foundation of China (No. 31100064), the National High Technology Research and Development Program of China (863 Program, No. 2011AA100905), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1135), the Major State Basic Research Development Program of China (973 Program, 2012CB720802, 2012CB720806), and the Natural Science Foundation of Jiangsu Province (No. BK2012553).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Byonghoon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zhang, J., Du, G. et al. Periplasmic Export of Bile Salt Hydrolase in Escherichia coli by the Twin-Arginine Signal Peptides. Appl Biochem Biotechnol 177, 458–471 (2015). https://doi.org/10.1007/s12010-015-1755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1755-3

Keywords

Navigation