Skip to main content

Advertisement

Log in

Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Michael, L. (1981). Effect of proline residues on protein folding. Journal of Molecular Biology, 145, 251–263.

    Article  Google Scholar 

  2. Grathwohl, C., & Wüthrich, K. (1976). The X-pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers, 15(10), 2025–2041.

    Article  CAS  Google Scholar 

  3. Saibi, W., Drira, M., Yacoubi, I., Feki, K., & Brini, F. (2015). Empiric, structural and in silico findings give birth to plausible explanations for the multifunctionality of the wheat dehydrin (DHN-5). Acta Physiologiae Plantarum, 37(3), 1–8.

    Article  CAS  Google Scholar 

  4. Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89–97.

    Article  CAS  Google Scholar 

  5. Shi, M, Hao, S, Chan, T, & Xiang, J. (2006). CD4+ T cells stimulate memory CD8+ T cell expansion via acquired pMHC I complexes and costimulatory molecules, and IL-2 secretion. Journal of Leukocyte Biology 80: 1354–1363

    Article  CAS  Google Scholar 

  6. Prasad, U., bin Jalaludin, M. A., Rajadurai, P., Pizza, G., De Vinci, C., Viza, D., & Levine, P. H. (1996). Transfer factor with anti-EBV activity as an adjuvant therapy for nasopharyngeal carcinoma: a pilot study. Biotherapy, 9(1–3), 109–115.

    Article  CAS  Google Scholar 

  7. Rauscher, S., Baud, S., Miao, M., Keeley, F. W., & Pomès, R. (2006). Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure, 14(11), 1667–1676.

    Article  CAS  Google Scholar 

  8. Washington, J. M., Rathjen, J., Felquer, F., Lonic, A., Bettess, M. D., Hamra, N., Semendric, L., Tan, B. S., Lake, J. A., Keough, R. A., Morris, M. B., & Rathjen, P. D. (2010). L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. American Journal of Physiology. Cell Physiology, 298(5), 982–992.

    Article  Google Scholar 

  9. Chauhan, S., Kumar, K., & Patial, B. S. (2013). Study of acoustic parameters of proline in lecithin-ethanol mixture at varying temperature. Indian Journal of Pure and Applied Physics, 51, 531–541.

    CAS  Google Scholar 

  10. Visiers, I., Braunheim, B. B., & Weinstein, H. (2000). Prokink: a protocol for numerical evaluation of helix distortions by proline. Protein Engineering Design and Selection, 13(9), 603–606.

    Article  CAS  Google Scholar 

  11. List, B., Hoang, L., & Martin, H. J. (2004). New mechanistic studies on the proline-catalyzed aldol reaction. PNAS, 101(16), 5839–5842.

    Article  CAS  Google Scholar 

  12. Nájera, C., Sansano, J. M., & Yus, M. (2010). Metal complexes versus organocatalysts in asymmetric 1,3-dipolar cycloadditions. Journal of the Brazilian Chemical Society, 21, 377–412.

    Article  Google Scholar 

  13. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456–1466.

    Article  CAS  Google Scholar 

  14. Iqbala, N., Umara, S., Khanb, N. A., & Khan, M. I. R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany, 100, 34–42.

  15. Hansom, J., Hanssen, M., Wiese, A., Hendriks, M. M. W. B., & Smeekens, S. (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE. Plant Journal, 53(6), 935–949.

    Article  Google Scholar 

  16. Gobinathan, P, Murali, P.V., & Panneerselvam, R. (2009). Interactive effects of calcium chloride on salinity-induced proline metabolism in Pennisetum typoidies. Advances in Biological Research 3 (5–6): 168-173

    CAS  Google Scholar 

  17. Kumar Kiran Ghanti, S., Sujata, K. G., Vijay Kumar, B. M., Nataraja Karba, N., Janardhan Reddy, K., Srinath Rao, M., & Kavt Kishor, P. B. (2011). Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantarum, 55(4), 634–640.

    Article  Google Scholar 

  18. Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N. A., & Al-Qurainy, F. (2012). Role of transgenic plants in agriculture and biopharming. Biotechnology Advances, 30(3), 524–540.

    Article  CAS  Google Scholar 

  19. Ismail T. (2011) Plant responses to drought and salinity stress. Advances in Botanical Research 57:2–555. ISBN:978–0–12–387692-8ISSN:0065–2296

  20. Foyer, C. H., & Graham, N. (2000). Oxygen processing in photosynthesis: regulation and signaling. The New Phytologist, 146, 359–388.

    Article  CAS  Google Scholar 

  21. Savouré, A., Jaoua, S., Hua, X. J., Ardiles, W., Van Montagu, M., & Verbruggen, N. (1995). Isolation, characterization, and chromosomal location of a gene encoding the 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Letters, 372, 13–19.

    Article  Google Scholar 

  22. Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753–759.

    Article  CAS  Google Scholar 

  23. Nicolás, M. C., Mariela, I. M., & María, E. A. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology, 155(4), 1947–1959.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Higher Education, Scientific Research and Technology, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Saibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saibi, W., Feki, K., Yacoubi, I. et al. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology. Appl Biochem Biotechnol 176, 2107–2119 (2015). https://doi.org/10.1007/s12010-015-1713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1713-0

Keywords

Navigation