Skip to main content
Log in

Identification of CBF14 and NAC2 Genes in Aegilops tauschii Associated with Resistance to Freezing Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Low temperature as one of the most important environmental factors limits the productivity of plants across the world. Aegilops, as a wild species of Poaceae, contains low temperature-responsive genes. In this study, we analyzed morphological (wilting, chlorosis, and recovery) and physiological (ion leakage) characteristics to identification of a cold-tolerant genotype. In this experiment, we introduced two transcription factors (TFs) in Aegilops species for the first time. Bioinformatics analysis demonstrated that our nucleotide sequences have high similarity with CBF14 (C-repeat-binding factor) and NAC2 (NAM, ATAF, and CUC) in Triticum aestivum. Based on the physiological and morphological data, one genotype (Aladizgeh) was identified as the most resistant genotype which was selected for further gene expression analysis. The real-time PCR results indicated that the CBF14 gene was not expressed 3 h following cold treatment, but the highest expression was observed after 6, 12, and 24 h of cold treatment; however, a sudden decrease was observed in its expression after 30 h. The NAC2 gene also was not expressed 3 h after cold stress, but the highest expression was at 24 h and similar to the CBF14 gene; its expression suddenly decreased after 30 h. Our results indicated that this genotype can tolerate −4 °C for 3 h, but the CBF14 and NAC2 genes were activated when treated for longer durations. Expression of TFs studied in this experiment had decreased after 30 h, in which cell death seems to be the important reason.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9, 841–857.

    Article  CAS  Google Scholar 

  2. Aslam, M., Grover, A., Sinha, V. B., Fakher, B., Pande, V., Yadav, P. V., Gupta, S. M., Anandhan, S., & Ahmed, Z. (2012). Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Molecular Biology Reports, 39, 9629–9638.

    Article  CAS  Google Scholar 

  3. Aslam, M., Sinha, V. B., Singh, R. K., Anandhan, S., Pande, V., & Ahmed, Z. (2010). Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiologiae Plantarum, 32, 205–210.

    Article  CAS  Google Scholar 

  4. Baker, S. S., Wilhelm, K. S., & Thomashow, M. F. (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology, 24, 701–713.

    Article  CAS  Google Scholar 

  5. Balazadeh, S., Siddiqui, H., Allu, A. D., Matallana-Ramirez, L. P., Caldana, C., Mehrnia, M., Zanor, M. I., Köhler, B., & Mueller-Roeber, B. (2010). A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal, 62, 250–264.

    Article  CAS  Google Scholar 

  6. Barashkova, E. (1980). Role of the D genome in increasing the frost resistance of winter wheat. 9-i Kongr. EUKARPIA. Genet. resursy i selektsiya rast. na ustoichivost’, Leningrad, 1980. 3-i Simpoz. Ustoichivost’rast. k abiotich. faktoram vnesh. sredy. Tez. dokl.

  7. Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 15243–15248.

    Article  CAS  Google Scholar 

  8. Fricano, A., Rizza, F., Faccioli, P., Pagani, D., Pavan, P., Stella, A., Rossini, L., Piffanelli, P., & Cattivelli, L. (2009). Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 119, 1335–1348.

    Article  CAS  Google Scholar 

  9. Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., & Thomashow, M. F. (1998). Low temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 16, 433–442.

    Article  CAS  Google Scholar 

  10. Hardwick, R., & Andrews, D. (1980). A method of measuring differences between bean varieties in tolerance to sub-optimal temperatures. Annals of Applied Biology, 95, 235–241.

    Article  Google Scholar 

  11. Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S.-H., Do Choi, Y., Kim, M., Reuzeau, C., & Kim, J.-K. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 153, 185–197.

    Article  CAS  Google Scholar 

  12. Kim, Y.-S., Kim, S.-G., Park, J.-E., Park, H.-Y., Lim, M.-H., Chua, N.-H., & Park, C.-M. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. The Plant Cell, 18, 3132–3144.

    Article  CAS  Google Scholar 

  13. Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6, 262–267.

    Article  CAS  Google Scholar 

  14. Knox, A. K., Li, C., Vágújfalvi, A., Galiba, G., Stockinger, E. J., & Dubcovsky, J. (2008). Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Molecular Biology, 67, 257–270.

    Article  CAS  Google Scholar 

  15. Kunieda, T., Mitsuda, N., Ohme-Takagi, M., Takeda, S., Aida, M., Tasaka, M., Kondo, M., Nishimura, M., & Hara-Nishimura, I. (2008). NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. The Plant Cell, 20, 2631–2642.

    Article  CAS  Google Scholar 

  16. Limin, A., & Fowler, D. (1985). Cold hardiness in Triticum and Aegilops species. Canadian Journal of Plant Science, 65, 71–77.

    Article  Google Scholar 

  17. Lindén, L. (2002) Measuring cold hardiness in woody plants. ed. University of Helsinki.

  18. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10, 1391–1406.

    Article  CAS  Google Scholar 

  19. Lutts, S., Kinet, J., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46, 1843–1852.

    Article  CAS  Google Scholar 

  20. Mao, X., Zhang, H., Qian, X., Li, A., Zhao, G., & Jing, R. (2012). TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 63, 2933–2946.

    Article  CAS  Google Scholar 

  21. Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., & Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 119, 463–470.

    Article  CAS  Google Scholar 

  22. Murata, T. and Tatsumi, Y. (1979). Ion leakage in chilled plant tissues. Low temperature stress in crop plants. The role of the membrane, 141–151.

  23. Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Molecular Biology, 42, 657–665.

    Article  CAS  Google Scholar 

  24. Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819, 97–103.

    Article  CAS  Google Scholar 

  25. Novillo, F., Alonso, J. M., Ecker, J. R., & Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 3985–3990.

    Article  CAS  Google Scholar 

  26. Nuruzzaman, M., Manimekalai, R., Sharoni, A. M., Satoh, K., Kondoh, H., Ooka, H., & Kikuchi, S. (2010). Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 30–44.

    Article  CAS  Google Scholar 

  27. Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H.-Y., & Tsutsumi, N. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 80, 135–139.

    Article  CAS  Google Scholar 

  28. Olsen, A. N., Ernst, H. A., Leggio, L. L., & Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 10, 79–87.

    Article  CAS  Google Scholar 

  29. Riechmann, J., Heard, J., Martin, G., Reuber, L., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O., Samaha, R., & Creelman, R. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110.

    Article  CAS  Google Scholar 

  30. Riechmann, J. L., & Meyerowitz, E. M. (1998). The AP2/EREBP family of plant transcription factors. Biological Chemistry, 379, 633–646.

    CAS  Google Scholar 

  31. Shen, H., Yin, Y., Chen, F., Xu, Y., & Dixon, R. A. (2009). A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. BioEnergy Research, 2, 217–232.

    Article  Google Scholar 

  32. Souer, E., van Houwelingen, A., Kloos, D., Mol, J., & Koes, R. (1996). The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85, 159–170.

    Article  CAS  Google Scholar 

  33. Sutton, F., Chen, D.-G., Ge, X., & Kenefick, D. (2009). Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and -susceptible, winter wheat mutant lines. BMC Plant Biology, 9, 34.

    Article  Google Scholar 

  34. Takada, S., Hibara, K.-i., Ishida, T., & Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128, 1127–1135.

    CAS  Google Scholar 

  35. Toker, C. (2005). Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genetic Resources and Crop Evolution, 52, 1–5.

    Article  Google Scholar 

  36. Toker, C., Erler, F., Ceylan, F. O., & Canci, H. (2010). Severity of leaf miner Liriomyza cicerina (Rondani, 1875) (Diptera: Agromyzidae) damage in relation to leaf type in chickpea. Turkey Journal of Entomology Derg-Tu, 34, 211–225.

    Google Scholar 

  37. Tran, L.-S. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 16, 2481–2498.

    Article  CAS  Google Scholar 

  38. Tran, L.-S. P., Nishiyama, R., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2010). Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 1, 32–39.

    Article  Google Scholar 

  39. Udvardi, M. K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., Zhang, J.-Y., Benedito, V., Hofer, J. M., & Chueng, F. (2007). Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology, 144, 538–549.

    Article  CAS  Google Scholar 

  40. Unfried, I., Stocker, U., & Gruendler, P. (1989). Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana Co10. Nucleic Acids Research, 17, 7513.

    Article  CAS  Google Scholar 

  41. Vágújfalvi, A., Galiba, G., Cattivelli, L., & Dubcovsky, J. (2003). The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Molecular Genetics and Genomics, 269, 60–67.

    Google Scholar 

  42. Vroemen, C. W., Mordhorst, A. P., Albrecht, C., Kwaaitaal, M. A., & de Vries, S. C. (2003). The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. The Plant Cell, 15, 1563–1577.

    Article  CAS  Google Scholar 

  43. Wani, S. H., Singh, N., Devi, T. R. and Haribhushan, A. Engineering abiotic stress tolerance in plants: extricating regulatory gene complex.

  44. Xie, Q., Frugis, G., Colgan, D., & Chua, N.-H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development, 14, 3024–3036.

    Article  CAS  Google Scholar 

  45. Xue, G.-P., Bower, N. I., McIntyre, C. L., Riding, G. A., Kazan, K., & Shorter, R. (2006). TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 33, 43–57.

    Article  CAS  Google Scholar 

  46. Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 6, 251–264.

    Article  CAS  Google Scholar 

  47. Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J., & Thomashow, M. F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. The Plant Journal, 39, 905–919.

    Article  CAS  Google Scholar 

  48. Zhong, R., Demura, T., & Ye, Z.-H. (2006). SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell, 18, 3158–3170.

    Article  CAS  Google Scholar 

  49. Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., & Hu, Z. (2014). A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology, 55, 119–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Guilan and was performed in the Laboratory of Plant Biotechnology of the University of Guilan. The bioinformatics analysis of CBF14 and NAC2 genes was conducted at the Agricultural Biotechnology Research Institute of Iran (ABRII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aalami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoomi-Aladizgeh, F., Aalami, A., Esfahani, M. et al. Identification of CBF14 and NAC2 Genes in Aegilops tauschii Associated with Resistance to Freezing Stress. Appl Biochem Biotechnol 176, 1059–1070 (2015). https://doi.org/10.1007/s12010-015-1629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1629-8

Keywords

Navigation