Skip to main content
Log in

Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants’ tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes’ activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Craufurd, P. Q., Jagadish, S. V. K., Wheeler, T. R., Bennett, J., & Lafitte, R. (2007). Heat tolerance at flowering. Abstract: An international workshop on “Cool rice for a warmer world”, Wuhan, China.

  2. Liu, Y., Zheng, Y. Z., Zhang, Y. Q., Wang, W. M., & Li, R. H. (2010). Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Current Microbiology, 60, 373–378.

    Article  CAS  Google Scholar 

  3. Lobell, D. B., & Asner, G. P. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science, 299, 1032.

    Article  CAS  Google Scholar 

  4. Zhang, G. L., Chen, L. Y., Lei, D. Y., & Zhang, S. T. (2005). The research progress of heat resistance in rice. Hybrid Rice, 20, 1–5.

    Google Scholar 

  5. Supuran, C. T. (2008). Carbonic anhydrases—an overview. Current Pharmaceutical Design, 14, 603–614.

    Article  CAS  Google Scholar 

  6. Tiwari, A., Kumar, P., Singh, S., & Ansari, S. A. (2005). Carbonic anhydrase in relation to higher plants. Photosynthetica, 43, 1–11.

    Article  CAS  Google Scholar 

  7. Karlsson, J., Clarke, A. K., Chen, Z. Y., Hugghins, S. Y., Park, Y. I., Husic, H. D., Moroney, J. V., & Samuelsson, G. (1998). A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO Journal, 17, 1208–1216.

    Article  CAS  Google Scholar 

  8. Moskvin, O. V., Ivanov, B. N., Ignatova, L. K., & Kollmeier, M. A. (2000). Light-induced stimulation of carbonic anhydrase activity in pea thylakoids. FEBS Letters, 470, 375–377.

    Article  CAS  Google Scholar 

  9. Kisiel, W., & Graf, G. (1972). Purification and characterization of carbonic anhydrase from Pisum sativum. Phytochemistry, 11, 113–117.

    Article  CAS  Google Scholar 

  10. Chang, C. W. (1975). Activation energy for thermal inactivation and Km of carbonic anhydrase from the cotton plant. Plant Science Letters, 4, 109–113.

    Article  CAS  Google Scholar 

  11. Lazova, G. N., Kicheva, M. I., & Popova, L. P. (2000). The effect of abscisic acid and methyl jasmonate on carbonic anhydrase activity in pea. Photosynthetica, 36, 631–634.

    Article  Google Scholar 

  12. Yu, S., Zhang, X. X., Guan, Q. J., Takano, T., & Liu, S. K. (2007). Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters, 29, 89–94.

    Article  Google Scholar 

  13. Kaul, T., Reddy, P. S., Mahanty, S., Thirulogachandar, V., Reddy, R. A., Kumar, B., Sopory, S., & Reddy, M. K. (2011). Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C4 plant, Pennisetum glaucum. Journal of Plant Physiology, 168, 601–610.

    Article  CAS  Google Scholar 

  14. Bageshwar, U. K., Premkumar, L., Gokhman, I., Savchenko, T., Sussman, J., & Zamir, A. (2004). Natural protein engineering: a uniquely salt-tolerant, but not halophilic, α-type carbonic anhydrase from algae proliferating in low-to hyper-saline environments. Protein Engineering Design and Selection, 17, 191–200.

    Article  CAS  Google Scholar 

  15. Liu, Y., & Zheng, Y. Z. (2005). PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 331, 325–332.

    Article  CAS  Google Scholar 

  16. Pan, J., Wang, J., Zhou, Z. F., Yan, Y. L., Zhang, W., Lu, W., Ping, S. Z., Dai, Q. L., Yuan, M. L., Feng, B., Hou, X. G., Zhang, Y., Ma, R. Q., Liu, T. T., Feng, L., Wang, L., Chen, M., & Lin, M. (2009). IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One, 4, e4422.

    Article  Google Scholar 

  17. Tanaka, S., Ikeda, K., Ono, M., & Miyasaka, H. (2002). Isolation of several anti-stress genes from a mangrove plant Avicennia marina. World Journal of Microbiology and Biotechnology, 18, 801–804.

    Article  CAS  Google Scholar 

  18. Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A., & Covarrubias, A. A. (2000). High hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry, 275, 5668–5674.

    Article  CAS  Google Scholar 

  19. Bai, Z., Harvey, L. M., & McNeil, B. (2003). Elevated temperature effects on the oxidant/antioxidant balance in submerged batch cultures of the filamentous fungus Aspergillus niger B1-D. Biotechnology and Bioengineering, 83, 772–779.

    Article  CAS  Google Scholar 

  20. Abrashev, R. I., Pashova, S. B., Stefanova, L. N., Vassilev, S. V., Dolashka-Angelova, P. A., & Angelova, M. B. (2008). Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Canadian Journal of Microbiology, 54, 977–983.

    Article  CAS  Google Scholar 

  21. Kim, I. S., Moon, H. Y., Yun, H. S., & Jin, I. (2006). Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. Journal of Microbiology, 44, 492–501.

    CAS  Google Scholar 

  22. Belozerskaya, T. A., & Gessler, N. N. (2007). Reactive oxygen species and the strategy of antioxidant defense in fungi: a review. Applied Biochemistry and Microbiology, 43, 506–515.

    Article  CAS  Google Scholar 

  23. Begonia, G. B., & Salin, M. L. (1991). Elevation of superoxide dismutase in Halobacterium halobium by heat shock. Journal of Bacteriology, 173, 5582–5584.

    CAS  Google Scholar 

  24. Romandini, P., Bonotto, C., Bertoloni, G., Beltramini, M., & Salvato, B. (1994). Superoxide dismutase, catalase and cell dimorphism in Candida albicans cells exposed to methanol and different temperatures. Comparative Biochemistry and Physiology. Pharmacology, Toxicology and Endocrinology, 108, 53–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the National Transgenic Research and Development Program (2011ZX08001-004) and the 863 program (31071391) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The amino acid sequences of the β-type carbonic anhydrate (OsCA). It contains a chloroplast transit peptide of 63 amino acid residues and a mature protein of 210 amino acid residues (GIF 133 kb)

High Resolution Image (EPS 2290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tianpei, X., Mao, Z., Zhu, Y. et al. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress. Appl Biochem Biotechnol 176, 625–635 (2015). https://doi.org/10.1007/s12010-015-1600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1600-8

Keywords

Navigation