Skip to main content
Log in

Detergent-Stable Salt-Activated Proteinases from Virgibacillus halodenitrificans SK1-3-7 Isolated from Fish Sauce Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The NaCl-activated and detergent-stable proteinases from Virgibacillus halodenitrificans SK1-3-7 isolated from fish sauce fermentation were purified and characterized. The enzymes with molecular masses of 20 and 36 kDa showed caseinolytic activity on a zymogram. Optimum azocaseinolytic activity was at 60 °C and pH 9. The proteolytic activity increased in the presence of 10 mM CaCl2 and 0.5 M NaCl and showed high stability at 0–2 M NaCl. The enzymes were stable at pH 4–10 and 10–50 °C. The enzymes preferably hydrolyzed Suc-Ala-Ala-Pro-Phe-pNA and were completely inhibited by phenylmethanesulfonyl fluoride (PMSF), showing subtilisin-like characteristics. Activity and stability remained high in the presence of H2O2 and various surfactants. The enzymes exhibited high stability (>95 %) in various organic solvents (DMSO, butanol, ethanol, 2-propanol, and acetonitrile) at concentration of 50 %. The V. halodenitrificans SK1-3–7 proteinases showed potential as a biocatalyst in aqueous-organic solvent systems and as an additive in laundry detergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Outtrup, H., & Boyce, C. O. L. (1990). Microbial proteases and biotechnology. In W. M. Fogarty & C. T. Kelly (Eds.), Microbial enzymes and biotechnology (pp. 227–254). New York: Elsevier Science.

    Chapter  Google Scholar 

  2. Akaracharanya, A., Chamroensaksri, N., Tanasupawat, S., & Visessanguan, W. (2008). Characterization of halophilic bacterium NB2-1 from pla-ra and its protease production. Journal of Food Biochemistry, 32, 536–555.

    Article  Google Scholar 

  3. Rodtong, S., Sinsuwan, S., & Yongsawatdigul, J. (2010). Purification and characterization of a salt-activated and organic solvent-stable heterotrimer proteinase from Virgibacillus sp. SK33 isolated from Thai Fish Sauce. Journal of Agricultural and Food Chemistry, 58, 248–256.

    Article  Google Scholar 

  4. Sinsuwan, S., Rodtong, S., & Yongsawatdigul, J. (2010). A NaCl-stable serine proteinase fromVirgibacillus sp. SK33 isolated from Thai fish sauce. Food Chemistry, 119, 573–579.

    Article  CAS  Google Scholar 

  5. Yoon, J. H., Kang, S. J., Jung, Y.-T., Lee, K. C., Oh, H. W., & Oh, T. K. (2010). Virgibacillusbyunsanensissp. nov., isolated from a marine solar saltern. International Journal of Systematic and Evolutionary Microbiology, 60, 291–295.

    Article  Google Scholar 

  6. Rodtong, S., Sinsuwan, S., & Yongsawatdigul, J. (2008). Production and characterization of NaCl-activated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation. Process Biochemistry, 43, 185–192.

    Article  Google Scholar 

  7. Phrommao, E., Rodtong, S., & Yongsawatdigul, J. (2011). Identification of novel halotolerantbacillopeptidase F-like proteinases from a moderately halophilic bacterium, Virgibacillus sp. SK37. Journal of Applied Microbiology, 110, 191–201.

    Article  CAS  Google Scholar 

  8. Kaewphuaka, S., Montriwong, A., Roytrakul, S., Rodtong, S., & Yongsawatdigul, J. (2012). Novel fibrinolytic enzymes from Virgibacillus halodenitrificans SK1-3-7 isolated from fish sauce fermentation. Process Biochemistry, 47, 2379–2387.

    Article  Google Scholar 

  9. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  10. Mishra, P., & Sareen, R. (2008). Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Applied Microbiology and Biotechnology, 79, 399–405.

    Article  Google Scholar 

  11. Beg, Q. K., Gupta, R., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.

    Article  Google Scholar 

  12. Ziaee, A. A., Karbalaei-Heidari, H. R., Amoozegar, M. A., & Schaller, J. (2007). Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibriosp. strain AF-2004. Enzyme and Microbial Technology, 40, 266–272.

    Article  Google Scholar 

  13. Bradford, M. M. (1976). A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Dimes, N., García-Carreño, F. L., & Haard, N. (1993). Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214, 65–69.

    Article  Google Scholar 

  15. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  16. Sinsuwan, S., Rodtong, S., & Yongsawatdigul, J. (2007). NaCl-Activated extracellular proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation. Journal of Food Science, 72, C264–C269.

    Article  CAS  Google Scholar 

  17. Hameed, A., Almas, S., Mohan, P., & Shell, D. (2009). Purification and characterization of a novel protease from Bacillus strain SAL1. African Journal of Biotechnology, 8, 3603–3609.

    Google Scholar 

  18. Takahara, H., Toyokawa, Y., Fukuta, M., Reungsang, A., Tachibana, S., Hachimine, Y., & Yasuda, M. (2010). Purification and characterization of a halotolerant serine proteinase from thermotolerantBacillus licheniformis RKK-04 isolated from Thai fish sauce. Applied Microbiology and Biotechnology, 86, 1867–1875.

    Article  Google Scholar 

  19. Palmieri, G., Bianco, C., Cennamo, G., Giardina, P., Marino, G., Monti, M., & Sannia, G. (2001). Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Applied and Environmental Microbiology, 67, 2754–2759.

    Article  CAS  Google Scholar 

  20. Voordouw, G., Milo, C., & Roche, R. S. (1976). Role of bound calcium ions in thermostable, proteolytic enzymes separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry, 15, 3716–3724.

    Article  CAS  Google Scholar 

  21. Pantoliano, M. W., Whitlow, M., Wood, J. F., Rollence, M. L., Finzel, B. C., Gilliland, G. L., Poulos, T. L., & Bryan, P. N. (1988). The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry, 27, 8311–8317.

    Article  CAS  Google Scholar 

  22. Veltman, O. R., Vriend, G., Berendsen, H. J. C., den Burg, B. V., Venema, G., & Eijsink, V. G. H. (1998). A single calcium binding site is crucial for the calcium-dependent thermalstability of thermolysin-like proteases. Biochemistry, 37, 5312–5319.

    Article  CAS  Google Scholar 

  23. Ballinger, M., & Wells, J. A. (1998). Subtilisin. In A. Barrett, N. D. Rawlings, & J. F. Woessner (Eds.), Handbook of proteolytic enzymes (pp. 289–294). San Diego: Academic Press.

    Google Scholar 

  24. Usharrani, B., & Muthuraj, M. (2010). Production and characterization of protease enzyme from Bacillus laterosporus. African Journal of Microbiology Research, 4, 1057–1063.

    Google Scholar 

  25. Anbu, P. (2013). Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). International Journal of Biological Macromolecules, 56, 162–168.

    Article  CAS  Google Scholar 

  26. Khajeh, K., Moradian, F., Sadeghizadeh, M., & Naderi-Manesh, H. (2009). Isolation, purification and characterization of a surfactants-, laundry detergents- and organic solvents-resistant alkaline protease from Bacillus sp. HR-08. Applied Biochemistry and Biotechnology, 159, 33–45.

    Article  Google Scholar 

  27. Mody, K., Shah, K., Jha, B., & Keshri, J. (2010). Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. Journal of Molecular Catalysis B: Enzymatic, 67, 85–91.

    Article  Google Scholar 

  28. Lozano, P., de Diego, T., & Iborra, J. L. (1996). Influence of water-miscible aprotic solvents on α-chymotrypsin stability. Biotechnology Progress, 12, 488–493.

    Article  CAS  Google Scholar 

  29. Kamoun, A., Frikha, B., & Nasri, M. (2003). Stability studies of protease from Bacillus cereus BG1. Enzyme and Microbial Technology, 32, 513–518.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Suranaree University of Technology Research and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirawat Yongsawatdigul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montriwong, A., Rodtong, S. & Yongsawatdigul, J. Detergent-Stable Salt-Activated Proteinases from Virgibacillus halodenitrificans SK1-3-7 Isolated from Fish Sauce Fermentation. Appl Biochem Biotechnol 176, 505–517 (2015). https://doi.org/10.1007/s12010-015-1591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1591-5

Keywords

Navigation