Skip to main content
Log in

Elucidating Genetic Diversity among Sour Orange Rootstocks: a Comparative Study of the Efficiency of RAPD and SSR Markers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to compare the effectiveness of two molecular marker systems, a set of six RAPD and nine SSR markers were used to study the genetic diversity in a population of 46 sour orange accessions, a common rootstock used in almost all citrus orchards in Tunisia. Genetic diversity parameters [average and effective number of alleles, percentage of polymorphism, polymorphic information content (PIC), effective marker index (EMI), and marker index (MI) parameters] for RAPD, SSR, and RAPD + SSR were determined in order to assess the efficiency of the two marker systems. The results revealed that these parameters were significantly higher when using RAPD markers. Similarly, cluster analysis using the results of RAPD was practically the same as that obtained when combining data from the two marker systems (RAPD + SSR) demonstrating the efficiency of RAPD in discriminating between sour orange accessions. Therefore, the use of SSR markers, known to be more efficient and discriminatory, does not bring significant supplementary information in this work. Indeed, results would have been obtained using only the RAPD markers. Accordingly, this work highlights the efficiency and advantages of RAPD, as an easy and efficient technique, in studying citrus rootstock’s genetic diversity, and establishing genetic relationships among citrus accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abkenar, A. A., & Isshiki, S. (2003). Molecular characterization and genetic diversity among Japanese acid citrus (Citrus spp.) based on RAPD markers. J Hort Sci Biotech, 78(1), 108–112.

    CAS  Google Scholar 

  2. Aka-Kacar, Y., Demirel, A., Tuzcu, O., Yesiloglu, T., et al. (2005). Preliminary results on fingerprinting lemon genotypes tolerant to mal secco (Phoma tracheiphila Kanc. et Ghik) disease by RAPD markers. Biologia, 60, 295–300.

    CAS  Google Scholar 

  3. Bachmann, K. (1997). Nuclear DNA markers in plant biosystematicresearch. Opera Botanica, 132, 137–148.

    Google Scholar 

  4. Baraket, G., Chatti, K., Saddoud, O., Abdelkarim, A. B., Mars, M., Trifi, M., & Hannachi, A. S. (2010). Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Molecular Biology Reporter, 29, 171–184.

    Article  Google Scholar 

  5. Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The continuous challenge of citrus tristeza virus control. Annual Review of Phytopathology, 27, 291–316.

    Article  Google Scholar 

  6. Barkley, N., Roose, M., Krueger, R., & Frederici, C. (2006). Assessing genetic diversity and population structure in a Citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112, 1519–1531.

    Article  CAS  Google Scholar 

  7. Barkley, N. A., Krueger, R. R., Federici, C. T., & Roose, M. L. (2009). What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Plant Systematics and Evolution, 282, 71–86.

    Article  CAS  Google Scholar 

  8. Barrett, H. C., & Rhodes, A. M. (1976). A numerical taxonomic study of affinity relations in cultivated citrus and its close relatives. Systematic Botany, 1, 105–136.

    Article  Google Scholar 

  9. Belaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., & Trujillo, I. (2003). Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theoretical and Applied Genetics, 107, 736–744.

    Article  CAS  Google Scholar 

  10. Bernardo Royo, J., & Itoiz, R. (2004). Evaluation of the discriminance capacity of RAPD, isoenzymes and morphologic markers in apple (Malus × domestica Borkh.) and the congruence among classifications. Genetic Resources and Crops Evolution, 51, 153–160.

    Article  CAS  Google Scholar 

  11. Biswas, M. K., Xu, Q., & Deng, X. X. (2010). Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae, 124, 254–261.

    Article  CAS  Google Scholar 

  12. Cai, Q., Guy, C. L., & Moore, G. A. (1994). Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) marker and RFLP mapping of cold-acclimation-responsive loci. Theoretical and Applied Genetics, 89, 606–614.

    Article  CAS  Google Scholar 

  13. Callen, D. F., Callen, A. D., Thimpson, Y., Shen, H. A., Phillips, R. I., Richards, J. C., & Mulley, G. R. (1993). Sutherland incidence and origin of “null” alleles in the (AC)n microsatellite markers. American Journal of Human Genetics, 52, 922–927.

    CAS  Google Scholar 

  14. Campos, T. E., Espinosa, M. A. G., Warburton, M. L., Varela, A. S., et al. (2005). Characterization of mandarin (Citrus spp.) using morphological and AFLP markers. Interciencia, 30, 687–693.

    Google Scholar 

  15. Capparelli, R., Viscardi, M., Amoroso, M. G., Blaiotta, G., & Bianco, M. (2004). Inter-simple sequence repeat markers and flow cytometry for the characterization of closely related Citrus limon germplasm. Biotechnology Letters, 26, 1296–1299.

    Article  Google Scholar 

  16. Castle, W. S., Tucker, D. P. H., Krezdorn, A. H., & Youtsey, C. O. (1993). Rootstocks for Florida citrus: rootstock selection, the first step to success (2nd ed.). Gainesville: University of Florida. 92p.

    Google Scholar 

  17. Cipriani, G., Di Bella, R., & Testolin, R. (1996). Screening RAPD primers for molecular taxonomy and cultivar fingerprinting in the genus Actinidia. Euphytica, 90, 169–174.

    Article  CAS  Google Scholar 

  18. Devarumath, R. M., Doule, R. B., Kawar, P. G., Naikebawane, S. B., & Nerkar, Y. S. (2007). Field performance and RAPD analysis to evaluate genetic fidelity of tissue culture raised plants vis à vis conventional sets derived plants of sugarcane. Sugar Tech, 9(1), 17–22.

    Article  CAS  Google Scholar 

  19. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  20. Elisiario, P. J., Justo, E. M., & Leitao, J. M. (1999). Identification of mandarin hybrids by isozyme and RAPD analysis. Scientia Horticulturae, 81, 287–299.

    Article  CAS  Google Scholar 

  21. Esselman, E. J., Lianqiang, L., Crawford, D. J., Winduss, J. L., et al. (1999). Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Molecular Ecology, 8, 443–451.

    Article  CAS  Google Scholar 

  22. Fang, D. Q., & Roose, M. L. (1997). Identification of closely related Citrus cultivars with intersimple sequence repeat markers. Theoretical and Applied Genetics, 95, 408–417.

    Article  CAS  Google Scholar 

  23. Fang, D. Q., Krueger, R. R., & Roose, M. L. (1998). Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. Journal of the American Society for Horticultural, 123, 612–617.

    CAS  Google Scholar 

  24. FAOSTAT (2012). FAO Statistics Database on the World Wide Web. http://faostat.fao.org/site/567/default.aspx#ancor (accessed August 2012).

  25. Fernandez, M. E., Figueras, A. M., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845–851.

    Article  CAS  Google Scholar 

  26. Fu, C. H., Chen, C. L., Guo, W. W., & Deng, X. X. (2004). GISH, AFLP and PCR-RFLP analysis of an intergeneric somatic hybrid combining Goutou sour orange and Poncirus trifoliata. Plant Cell Reports, 23, 391–396.

    Article  CAS  Google Scholar 

  27. Gallego, F. J., Perez, M. A., Nunez, Y., & Hidalgo, P. (2005). Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiology, 22, 561–568.

    Article  Google Scholar 

  28. Garcia, A. A. F., Benchimol, L. L., Barbosa, A. M. M., Geraldi, I. O., et al. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology, 27, 579–588.

    Article  CAS  Google Scholar 

  29. Gilbert, J. E., Lewis, R. V., Wilkinson, M. J., & Caligari, P. D. (1999). Developing an appropriate strategy to assess genetic variability in plant collections. Theoretical and Applied Genetics, 98, 1125–1131.

    Article  CAS  Google Scholar 

  30. Graner, A., Dehmer, K. J., Thiel, T., & Börner, A. (2004). Plant genetic resources: benefits and implications of using molecular markers. In M. C. de Vincente (Ed.), Issues in genetic resources no. 11 (pp. 26–32). Rome: IPGRI.

    Google Scholar 

  31. Guilford, P., Prakash, S., Zhu, J. M., Rikkerink, E., Gardiner, S., Bassett, H., & Forster, R. (1997). Microsatellites in Malus domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics, 94, 249–254.

    Article  CAS  Google Scholar 

  32. Gulsen, O., & Roose, M. L. (2001). Lemons: diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticultural Science, 126, 309–317.

    CAS  Google Scholar 

  33. Gulsen, O., Uzun, A., Canan, I., Seday, U., & Canihos, E. (2010). A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica, 173, 265–277.

    Article  CAS  Google Scholar 

  34. Gupta, P. K., Varshney, R. K., & Prasad, M. (2002). Molecular markers: principles and methodology. In S. M. Jain, B. S. Ahloowalia, & D. S. Brar (Eds.), Molecular techniques in crop improvement (pp. 9–54). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  35. Jaccard, P. (1908). Nouvelles recherché sur la distribution florale. Bulletin de la Société vaudoise des sciences naturelles , 44, 223–270.

    Google Scholar 

  36. Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099–1106. doi:10.1111/j.1365-294x.2007.03089.x.

    Article  Google Scholar 

  37. Khadari, B., Breton, C., Moutier, N., Roger, J. P., Besnard, G., Bervillé, A., et al. (2003). The use of molecular markers for germplasm management in a French olive collection. Theoretical and Applied Genetics, 106, 521–529.

    CAS  Google Scholar 

  38. Landergott, U., Holderegger, R., Kozlowski, G., & Schneller, J. J. (2001). Historical bottlenecks decrease genetic diversity in natural populations of Dryopteris cristata. Heredity, 87, 344–355.

    Article  CAS  Google Scholar 

  39. Luro, F., Costantino, G., Terol, J., Argout, X., Allario, T., Wincker, P., Talon, M., Ollitrault, P., & Morillon, R. (2008). Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics, 9, 287.

    Article  Google Scholar 

  40. Luro, F., Rist, D., & Ollitrault, P. (2001). Evaluation of genetic relationships in Citrus genus by means of sequence tagged microsatellites. Proceedings of the International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture February 2001; Montpellier, France. Acta Horticulturae, 546, 237–242.

    CAS  Google Scholar 

  41. Lynch, M., & Walsh, J. B. (1998). Genetics and analysis of quantitative traits. Sunderland: Sinauer Assocs., Inc.

    Google Scholar 

  42. Mabberley, D. J. (1998). Australian Citreae with notes on other Aurantioideae (Rutaceae). Telopea, 74, 333–344.

    Google Scholar 

  43. Roose, M. L. (http://www.plantbiology.ucr.edu/faculty/SSR-Marker-Tables-Germplasm-v5.pdf).

  44. Ming, F., Liu, Q. K., Shi, J. L., Wang, W., & Lu, B. R. (2009). Strategic conservation of orchard germplasm based on indigenous knowledge and genetic diversity: a case study of sour orange populations in China. Journal of Integrative Plant Biology, 51, 100–106.

    Article  Google Scholar 

  45. Morgante, M., & Olivieri, A. M. (1993). PCR-amplified microsatellite as markers in plant genetics. Plant Journal, 3, 175–182.

    Article  CAS  Google Scholar 

  46. Nicese, F. P., Hormaza, J. I., & McGranahan, G. H. (1998). Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica, 101, 199–206.

    Article  CAS  Google Scholar 

  47. Penner, G. A. (1996). RAPD analysis of plant genomes. In P. P. Jauhar (Ed.), Methods of genome analysis in plants (pp. 251–268). Boca Raton: CRC Press.

    Google Scholar 

  48. Nicolosi, E., Deng, Z. N., Gentile, A., & La Malfa, S. (2000). Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics, 100, 1155–1166.

    Article  CAS  Google Scholar 

  49. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

    CAS  Google Scholar 

  50. Novelli, V. M., Cristofani, M., Souza, A. A., & Machado, M. A. (2006). Development and characterization of polymorphic microsatellite markers for the sweet orange (Citrus sinensis L. Osbeck). Genetics and Molecular Biology, 29, 90–96.

    Article  CAS  Google Scholar 

  51. Novelli, V. M., Machado, M. A., & Romero Lopes, C. (2000). Isoenzymatic polymorphism in Citrus spp. and Poncirus trifoliata (L.) Raf. (Rutaceae). Genetics and Molecular Biology, 23, 163–168.

    Article  CAS  Google Scholar 

  52. Oliveira, R. P., Cristofani, M., Aguilar-vildoso, C. I., & Machado, M. A. (2002). Diversidade genética entre híbridos de tangerina ‘Cravo’ e laranja ‘Pêra’. Pesquisa Agropecuária Brasileira, Brasília, 37(4), 479–484.

    Article  Google Scholar 

  53. Ollitrault, F., Terol, J., Pina, J. A., Navarro, L., Talon, M., & Ollitrault, P. (2010). Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. American Journal of Botany, 97, e124–e129.

    Article  CAS  Google Scholar 

  54. Palombi, M. A., & Damiano, C. (2002). Comparison between RAPD and SSR molecular mark- ers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Reports, 20, 1061–1066.

    Article  CAS  Google Scholar 

  55. Pejic, I., Ajmone-Marsan, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G., & Motto, M. (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics, 97, 1248–1255.

    Article  CAS  Google Scholar 

  56. Pooler, M., & Scorza, R. (1995). Aberrant transmission of RAPD markers in haploids, doubled haploids, and F1 hybrids of peach: observations and speculation on causes. Scientia Horticulturae, 64, 233–241.

    Article  Google Scholar 

  57. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.

    Article  CAS  Google Scholar 

  58. Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107–112.

    Article  CAS  Google Scholar 

  59. Rajora, O. P., & Rahman, M. H. (2003). Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus canadiensis) cultivars. Theoretical and Applied Genetics, 106, 470–477.

    CAS  Google Scholar 

  60. Rohlf, F. J. (2000). NTSYS- pc: Numerical taxonomy and multivariate analysis system. Version: 2.1. Exeter Software, New York.

  61. Ruiz, C., Paz Breto, M., & Asíns, M. J. (2000). A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 112, 89–94.

    Article  CAS  Google Scholar 

  62. Rus-Kortekaas, W., Smulders, M. J. M., Arens, P., & Vosman, B. (1994). Direct comparison of levels of genetic-variation in tomato detected by a GACA containing microsatellite probe and by random amplified polymorphic DNA. Genome, 37, 375–381.

    Article  CAS  Google Scholar 

  63. Russell, J. R., Fuller, J. D., & Macaulay, M. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.

    Article  CAS  Google Scholar 

  64. Scariot, V., De Keyser, E., Handa, T., & De Riek, J. (2007). Comparative study of the discriminating capacity and effectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreen azales. Plant Breeding, 126, 207–212.

    Article  CAS  Google Scholar 

  65. Singh, D. N. (2006). Participatory plant breeding as a method of rice breeding. International Rice Research Notes, 31(2), 48–50.

    Google Scholar 

  66. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: Freeman.

    Google Scholar 

  67. Snoussi, H., Duval, M. F., Garcia-Lor, A., Belfalah, Z., Froelicher, Y., Risterucci, A. M., Perrier, X., Jacquemoud-Collet, J. P., Navarro, L., Harrabi, M., & Ollitrault, P. (2012). Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm. BMC Genetics, 13(16), 1471–2156.

    Google Scholar 

  68. Sokal, R., & Michener, C. (1958). A statistical method for evaluating statistical relationships. Kansas University Science Bulletin, 38, 1409–1438.

    Google Scholar 

  69. Souframanien, J., & Gopalakrishna, T. (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics, 109, 1687–1693.

    Article  CAS  Google Scholar 

  70. Sugawara, K., Wakizuka, T., Oowada, A., Moriguchi, T., & Omura, M. (2002). Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric Citrus. Journal of the American Society for Horticultural Science, 127, 104–107.

    CAS  Google Scholar 

  71. Sun, G. L., William, M., Liu, J., Kasha, K. J., & Pauls, K. P. (2001). Microsatellite and RAPD polymosphisms in Ontario corn hybridos are related to the commercial sources and maturity ratings. Molecular Breeding, 7, 13–24.

    Article  CAS  Google Scholar 

  72. Swingle, W. T., & Reece, P. C. (1967). The botany of Citrus and its wild relatives. In W. Reuther, L. D. Batchelor, & H. J. Webber (Eds.), The citrus industry (Vol. 1, pp. 190–430). Riverside: University of California.

    Google Scholar 

  73. Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphism when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86, 985–990.

    Article  CAS  Google Scholar 

  74. Tiwari Sh, K., Karihaloo, J. L., Hameed, N., & Gaikwad, A. B. (2009). Molecular characterization of brinjal (Solanum melongena L.) cultivars using RAPD and ISSR markers. Journal of Plant Biochemistry and Biotechnology, 18, 189–195.

    Article  Google Scholar 

  75. Uzun, A., Yesiloglu, T., Aka-Kacar, Y., Tuzcu, O., & Gulsen, O. (2009). Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Scientia Horticulturae, 121, 306–312.

    Article  CAS  Google Scholar 

  76. Varshney, R. K., Chabane, K., Hendre, P. S., Aggarwal, R. K., & Graner, A. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and Elite Barleys. Plant Science, 173, 638–649.

    Article  CAS  Google Scholar 

  77. Wattier, R., Engel, C. R., Saumitou-Laprade, P., & Valero, M. (1998). Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology, 7, 1569–1573.

    Article  CAS  Google Scholar 

  78. Weising, K., Nybom, H., Wolf, K., & Meyer, W. (1995). DNA fingerprinting in plants and fungi. Boca Rato: CRC Press.

    Google Scholar 

  79. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Tunisian “Ministry of Higher Education and Scientific Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Lamine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamine, M., Mliki, A. Elucidating Genetic Diversity among Sour Orange Rootstocks: a Comparative Study of the Efficiency of RAPD and SSR Markers. Appl Biochem Biotechnol 175, 2996–3013 (2015). https://doi.org/10.1007/s12010-015-1477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1477-6

Keywords

Navigation