Skip to main content
Log in

Identification of Cellulolytic Bacteria from Guts of Microcerotermes diversus Silvestri (Isoptera: Termitidae) in Southern Iran

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Termites are a large and important group of insects in terrestrial ecosystems that decompose lignocelluloses. Among these, Microcerotermes diversus Silvestri (Termitidae) is a destructive invasive pest in many tropical and subtropical regions. In the present study, M. diversus specimens were collected from traps in Ahvaz, Bandar Abbas, Kish, and Khark Islands. Sample suspensions were prepared in 5-ml DH2O and cultured on nutrient agar (NA) medium. All 47 representative bacterial isolates were evaluated for cellulolytic activity by growing them on cellulose Congo-red agar medium. Based on some key phenotypic characteristics, the isolates were tentatively identified at the genus level. These were confirmed by 16S rRNA analysis using a universal primer pair (P1/P6). Sequence alignments revealed that most of the isolates are novel species so far found in the termite guts. Results showed that some of the isolates are common for all surveyed areas. However, there were significant differences in their numbers and degree of cellulolytic activity. The species reported here for the first time for termites of Iran are Bacillus wiedmanii, B. paramycoides, Elizabethkingia anophelis, Lysinibacillus pakestanensis, Pseudomonas hibiscicola, Actinetobacter pitti, A. venetianus, and Ochrobactrum anthropi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acharya T (2014) Salt tolerance test for Enterococcus species: principle, procedure and results, biochemical tests in microbiology. Microbe Online

  2. André S, Zuber F, Remize F (2013) Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int J Food Microbiol 165:134–143

    PubMed  Google Scholar 

  3. Bignell DE, Roisin Y, Lo N (2011) Biology of termites: a modern synthesis. Springer, Marburg

    Google Scholar 

  4. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite guts microbes. Appl Environ Microbiol 52:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    CAS  Google Scholar 

  6. Brune A, Emerson D, Kühl MJ, Breznak A (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brune A (2006) Symbiotic associations between termites andprokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes: symbiotic association, biotechnology, and appliedmicrobiology. Springer, Dordrecht

    Google Scholar 

  8. Brune A, Ohkuma M (2010) Role of the termite gut microbiota insymbiotic digestion. Springer, Dordrecht

    Google Scholar 

  9. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    CAS  PubMed  Google Scholar 

  10. Cappuccino J, Sherman N (1992) Microbiology: a laboratory manual. Benjamin-Cummings Publishing Co., Inc., San Francisco

    Google Scholar 

  11. Deschamps AM, Mahoudean G, Lebeault JM (1980) Fast degradation of kraft lignin by bacteria. Eur J Appl Microbiol Biotechnol 9:45–51

    CAS  Google Scholar 

  12. Delalibera I Jr, Handelsam J, Raffa KF (2005) Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol 34(3):541–547

    Google Scholar 

  13. Eutick ML, O’Brien RW, Slaytor M (1978) Bacteria from the gut ofAustralian termites. Appl Environ Microbiol 35:823–828

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fathollahi Z, Habibpour B, Moharramipour S, Kocheili F (2010) Comparative laboratory efficacy of boric acid and thiamethoxam on biology and behavior of Microcerotermes diversus (Silvestri) (Isoptera:Termitidae). M. Sci. Thesis, Shahid Chamran Univ., Ahwaz, Iran. 144 pp. (in Persian).

  15. Fisher M.L (2006) Comparison of subterranean termite (Rhinotermitidae: Reticulitermes) gut bacterial diversity within and between colonies and to other termite species using molecular techniques (ARDRA and 16S rRNA Gene Sequencing). M.Sc. Thesis. VPI and SU, Blacksburg, VA. USA. 111 pp.

  16. Ghayourfar R (2005) Three new species of termite from Iran (Isoptera: Termitidae). Zool Middle East 34:61–66

    Google Scholar 

  17. Grech-Mora I, Fardeau ML, Patel BKC, Ollivier B, Rimbault A, Prensier G, Garcia SJL, Garnier-Sillam E (1996) Isolation and characterization of Sporobacter sp nov., from the digestive Tract of the Termite Nasutitemes lujae ternitidis gen. nov., wood-feeding. Int J Syst Bacteriol 46(2):512–518

    Google Scholar 

  18. Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degradingbacteria and determination of their cellulolytic potential. Int. J Microbiol 2012:5. https://doi.org/10.1155/2012/578925

    Article  CAS  Google Scholar 

  19. Habibpour B (1994) Termites (Isoptera) fauna, economic importance and their biology in Khuzestan province, Iran. M. Sc. Thesis. Coll. Agric., Shahid Chamran Univ., Ahwaz, Iran. 143 pp. (in Persian)

  20. Hungate RE (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol Soc Amer 36:730–739

    CAS  Google Scholar 

  21. Hongoh Y, Deevong P, Inoue T, Moriya Sh, Trakulnaleamsai S, Ohkuma M, Vongkaluang Ch, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Husseneder C, Sethi A, Foil L, Delatte J (2010) Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut). J Visual Exper 46:1–6

    Google Scholar 

  23. Ijong F.G (2003) Uji IMVIC. Uraian Teoritis Proses Biokimianya. Laboratorium Mikrobiologi Hasi Perikanan. Fakultas Perikanan dan llmu Kelautan (FPIK). Univ. Sam Ratulangi (UnSRat), Manado, Indonesia.

  24. Kane MD, Breznak JA (1991) Acetonema longum gen. nov., sp. nov., an H2/CO2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98

    CAS  PubMed  Google Scholar 

  25. Kato K, Kozaki SH, Sakuranaga M (1998) Degradation of Lygnin compounds by bacteria from termite guts. Biotech Lett 20(5):459–466

    CAS  Google Scholar 

  26. König H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101:620–627

    PubMed  Google Scholar 

  27. König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. Soil Biol 6:271–301

    Google Scholar 

  28. König H, Varma A (2006) Intestinal microorganisms of termites andother invertebrates. Springer, Berlin

    Google Scholar 

  29. Kuhnigk T, Borst M, Ritter A, Kampfer P, Hertel GA, Konig H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termite. J Basic Microbiol 17:76–85

    CAS  Google Scholar 

  30. Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73(12):2561–2567

    CAS  PubMed  Google Scholar 

  31. Lay BW (1994) Analisa Mikroba di Laboratorium. PT. Raja GRafindo Persada. Jakarta 168 Hal.

  32. Leboffe MJ, Burton E (2008) Microbiology: Laboratory Theory and Application. Morton Press, Englewood, CO, Briefed

    Google Scholar 

  33. Lu WJ, Wang HT, Nie YF et al (2004) Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. J Environ Sci Health Part B 39:871–887

    Google Scholar 

  34. Mathew GM, Lin SJ, Chang JJ, Huang CC (2011) DGGE detection and screening of lignocellulolytic bacteria from the termite gut of Coptotermes formosanus. Malays J Microbiol 7:201–209

    CAS  Google Scholar 

  35. Murinda SE, Nguyen LT, Ivey SJ, Almeida RA, Oliver SP (2002) Novel single-tube agar-based test system for motility enhancement and immunocapture of Escherichia coli O157:H7 by H7 flagellar antigen-specific antibodies. J Clin Microbiol 40(12):4685–4690

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite; identification of reactive tyrosines by mass spectrometry. J Biol Chem 10(1074):1–40

    Google Scholar 

  37. O’Brien RW, Slaytor M (1982) Role of microorganisms in themetabolism of termites. Austral J Biol Sci 35:239–262

    Google Scholar 

  38. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocelluloses. Appl Microbiol Biotechnol 61:1–9

    CAS  PubMed  Google Scholar 

  40. Pourramezan Z, Ghezelbash GR, Romani B, Ziaei S, Hedayatkhah A (2012) Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Microbiology 81(6):736–742

    CAS  Google Scholar 

  41. Ramin M, Alimon AR, Abdullah N (2009) Identification of cellulolytic bacteria isolated from the termite Coptotermes curvignathus (Holmgren). J Rapid Methods Autom Microbiol 17:103–116

    CAS  Google Scholar 

  42. Sangiliyandi G, Kannan TR, Chandra RK, Gunasekaran P (1999) Separation of levan-formation and sucrose-hydrolysis catalyzed bylevansucrase of Zymomonas mobilis using in vitro mutagenesis. Braz Arch Biol Technol 42(4):5

    Google Scholar 

  43. Schafer A, Konrad R, Kuhnigk P, Kampfer P, Hertel H, Konig H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    CAS  PubMed  Google Scholar 

  44. Scheffrahn RH, Huchet JB (2010) A new termite species (Isoptera:Termitidae: Termitinae: Amitermes) and first record of a subterraneantermite from the coastal desert of South America. J Magnolia Press Zootaxa 2328:65–68

    Google Scholar 

  45. Singh S, Thavamani P, Megharaj M, Naidu R (2015) Multifariousactivities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces. J Animal Sci Technol 57:23

    Google Scholar 

  46. Strassert Jürgen FH (2009) The symbioses of termite gut flagellates and their bacterial endo-and ectosymbionts: analysis of ultrastructure, phylogeny and cospeciation. Doctoral dissertation. Berlin University, Germany. 121 pp.

  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Upadhyaya SK, Manandhar A, Mainali H, Pokhrel AR, Rijal A, Pradhan B, Koirala B (2012) Isolation and characterization of cellulolytic bacteria from gut of termite. Rentech Symp Compendium 1:14–18

    Google Scholar 

  49. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    CAS  PubMed  Google Scholar 

  50. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Science and Research Branch, I. Azad University, for providing laboratory facilities. This work is part of the Ph.D. dissertation of Zeinab Fathollahi. We thank Prof. Bard Kard (Oklahoma State University, USA) for reviewing earlier drafts of this paper.

Funding

This study is funded by Science and Research Branch I. Azad University.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by ZF, BH, SI, NH, and MA. Experiments were performed and evaluated by ZF.

Corresponding author

Correspondence to Behzad Habibpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathollahi, Z., Habibpour, B., Imani, S. et al. Identification of Cellulolytic Bacteria from Guts of Microcerotermes diversus Silvestri (Isoptera: Termitidae) in Southern Iran. Curr Microbiol 78, 1305–1316 (2021). https://doi.org/10.1007/s00284-021-02369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02369-0

Navigation