Skip to main content
Log in

Surface Modification of Polyacrylonitrile Fibre by Nitrile Hydratase from Corynebacterium nitrilophilus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Previously, nitrile hydratase (NHase) from Corynebacterium nitrilophilus was obtained and showed potential in polyacrylonitrile (PAN) fibre modification. In the present study, the modification conditions of C. nitrilophilus NHase on PAN were investigated. In the optimal conditions, the wettability and dyeability (anionic and reactive dyes) of PAN treated by C. nitrilophilus NHase reached a similar level of those treated by alkali. In addition, the chemical composition and microscopically observable were changed in the PAN surface after NHase treatment. Meanwhile, it revealed that cutinase combined with NHase facilitates the PAN hydrolysis slightly because of the ester existed in PAN as co-monomer was hydrolyzed. All these results demonstrated that C. nitrilophilus NHase can modify PAN efficiently without textile structure damage, and this study provides a foundation for the further application of C. nitrilophilus NHase in PAN modification industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araujo, R., Casal, M., & Cavaco-Paulo, A. (2008). Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 26, 332–349.

    Article  CAS  Google Scholar 

  2. Battistel, E., Morra, M., & Marinetti, M. (2001). Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science, 177, 32–41.

    Article  CAS  Google Scholar 

  3. Guebitz, G. M., & Cavaco-Paulo, A. (2008). Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. Trends in Biotechnology, 26, 32–38.

    Article  CAS  Google Scholar 

  4. Silva, C., & Cavaco-Paulo, A. (2008). Biotransformations in synthetic fibres. Biocatalysis and Biotransformation, 26, 350–356.

    Article  CAS  Google Scholar 

  5. Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44.

    Article  CAS  Google Scholar 

  6. Gubitz, G. M., & Paulo, A. C. (2003). New substrates for reliable enzymes: enzymatic modification of polymers. Current Opinion in Biotechnology, 14, 577–582.

    Article  CAS  Google Scholar 

  7. Matamá, T., Carneiro, F., Caparrós, C., Gübitz, G. M., & Cavaco-Paulo, A. (2007). Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2, 353–360.

    Article  Google Scholar 

  8. Sharma, M., Sharma, N. N., & Bhalla, T. C. (2009). Amidases: versatile enzymes in nature. Reviews in Environmental Science and Biotechnology/Technology, 8, 343–366.

    Article  CAS  Google Scholar 

  9. Mitra, S., & Holz, R. C. (2007). Unraveling the catalytic mechanism of nitrile hydratases. Journal of Biological Chemistry, 282, 7397–7404.

    Article  CAS  Google Scholar 

  10. Babu, V., Shilpi, & Choudhury, B. (2010). Nitrile-metabolizing potential of Amycolatopsis sp. IITR215. Process Biochemistry, 45, 866–873.

    Article  CAS  Google Scholar 

  11. Prepechalova, I., Martinkova, L., Stolz, A., Ovesna, M., Bezouska, K., Kopecky, J., & Kren, V. (2001). Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Applied Microbiology and Biotechnology, 55, 150–156.

    Article  CAS  Google Scholar 

  12. Song, L., Wang, M., Yang, X., & Qian, S. (2007). Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Biotechnology Journal, 2, 717–724.

    Article  CAS  Google Scholar 

  13. Okamoto, S., & Eltis, L. D. (2007). Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Molecular Microbiology, 65, 828–838.

    Article  CAS  Google Scholar 

  14. Bandyopadhyay, A. K., Nagasawa, T., Asan, Y., Fujishiro, K., Tani, Y., & Yamada, H. (1982). Aliphatic nitrile hydratase from Arthrobacter sp. J1 purification and characterization. Agricultural and Biological Chemistry, 46, 1165–1174.

    Article  Google Scholar 

  15. Bandyopadhyay, A. K., Nagasawa, T., Asano, Y., Fujishiro, K., Tani, Y., & Yamada, H. (1986). Purification and characterization of benzonitrilases from Arthrobacter sp. strain J-1. Applied and Environmental Microbiology, 51, 302–306.

    CAS  Google Scholar 

  16. Kim, S., & Oriel, P. (2000). Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme and Microbial Technology, 27, 492–501.

    Article  CAS  Google Scholar 

  17. Mayaux, J. F., Cerebelaud, E., Soubrier, F., Faucher, D., & Petre, D. (1990). Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. Journal of Bacteriology, 172, 6764–6773.

    CAS  Google Scholar 

  18. Raj, J., Prasad, S., & Bhalla, T. C. (2006). Rhodococcus rhodochrous PA-34: a potential biocatalyst for acrylamide synthesis. Process Biochemistry, 41, 1359–1363.

    Article  CAS  Google Scholar 

  19. Tauber, M. M., Cavaco-Paulo, A., Robra, K., & Gubitz, G. M. (2000). Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Applied and Environmental Microbiology, 66, 1634–1638.

    Article  CAS  Google Scholar 

  20. Fischer-Colbrie, G., Herrmann, M., Heumann, S., Puolakka, A., Wirth, A., Cavaco-Paulo, A., & Guebitz, G. M. (2006). Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. Biocatalysis and Biotransformation, 24, 419–425.

    Article  CAS  Google Scholar 

  21. Babu, V., & Choudhury, B. (2012). Competitive adsorptions of nitrile hydratase and amidase on polyacrylonitrile and its effect on surface modification. Colloids and Surfaces B: Biointerfaces, 89, 277–282.

    Article  CAS  Google Scholar 

  22. Fischer-Colbrie, G., Matama, T., Heumann, S., Martinkova, L., Cavaco Paulo, A., & Guebitz, G. (2007). Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. Journal of Biotechnology, 129, 62–68.

    Article  CAS  Google Scholar 

  23. Chen, S., Tong, X., Woodard, R. W., Du, G., Wu, J., & Chen, J. (2008). Identification and characterization of bacterial cutinase. Journal of Biological Chemistry, 283, 25854–25862.

    Article  CAS  Google Scholar 

  24. Zhang, Y., Chen, S., Wu, J., & Chen, J. (2012). Enzymatic surface modification of cellulose acetate fiber by cutinase–CBM (carbohydrate-binding module) fusion proteins. Biocatalysis and Biotransformation, 30, 184–189.

    Article  CAS  Google Scholar 

  25. Gao, H., Chen, S., Wu, J., & Chen, J. (2011). Fermentation optimization in shake flasks of Corynebacterium nitrilophilus NHase applied in surface modification of polyacrylonitrile fibers. Zhongguo Shengwu Gongcheng Zazhi, 31, 54–60.

    Google Scholar 

  26. Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28, 725–741.

    Article  CAS  Google Scholar 

  27. Cramp, R. A., & Cowan, D. A. (1999). Molecular characterisation of a novel thermophilic nitrile hydratase. Biochimica et Biophysica Acta, 1431, 249–260.

    Article  CAS  Google Scholar 

  28. Takashima, Y., Yamaga, Y., & Mitsuda, S. (1998). Nitrile hydratase from a thermophilic Bacillus smithii. Journal of Industrial Microbiology and Biotechnology, 20, 220–226.

    Article  CAS  Google Scholar 

  29. Petrillo, K. L., Wu, S., Hann, E. C., Cooling, F. B., Ben-Bassat, A., Gavagan, J. E., DiCosimo, R., & Payne, M. S. (2005). Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Applied Microbiology and Biotechnology, 67, 664–670.

    Article  CAS  Google Scholar 

  30. Pereira, R. A., Graham, D., Rainey, F. A., & Cowan, D. A. (1998). A novel thermostable nitrile hydratase. Extremophiles, 2, 347–357.

    Article  CAS  Google Scholar 

  31. Liu, J., Yu, H., & Shen, Z. (2008). Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 27, 529–535.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Science and Technology Support Project of Jiangsu Province (BE2012018 and BE2012019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Gao, H., Chen, J. et al. Surface Modification of Polyacrylonitrile Fibre by Nitrile Hydratase from Corynebacterium nitrilophilus . Appl Biochem Biotechnol 174, 2058–2066 (2014). https://doi.org/10.1007/s12010-014-1186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1186-6

Keywords

Navigation