Skip to main content
Log in

Detergent-Compatible Bacterial Amylases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azad, M. A. K., Bae, J. H., Kim, J. S., Lim, J. K., Song, K. S., Shin, B. S., & Kim, H. R. (2009). New Biotechnology, 26, 143–149.

    Article  CAS  Google Scholar 

  2. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Process Biochemistry, 38, 1599–1616.

    Article  CAS  Google Scholar 

  3. Aiyer, P. V. (2005). African Journal of Biotechnology, 4, 1525–1529.

    CAS  Google Scholar 

  4. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Biotechnology and Applied Biochemistry, 31, 135–152.

    Article  CAS  Google Scholar 

  5. Schallmey, M., Singh, A., & Ward, O. P. (2004). Canadian Journal of Microbiology, 50, 1–17.

    Article  CAS  Google Scholar 

  6. Kim, T. U., Gu, B. G., Jeong, J. Y., Byun, S. M., & Shin, Y. C. (1995). Applied and Environmental Microbiology, 61, 3105–3112.

    CAS  Google Scholar 

  7. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). Food Technology and Biotechnology, 44, 173–184.

    CAS  Google Scholar 

  8. Mobini-Dehkordi, M., & Javan, F. A. (2012). Journal of Biology and Today’s World, 1, 39–50.

    Google Scholar 

  9. Roy, J. K., Rai, S. K., & Mukherjee, A. K. (2012). International Journal of Biological Macromolecules, 50, 219–229.

    Article  CAS  Google Scholar 

  10. Prakash, O., & Jaiswal, N. (2010). Applied Biochemistry and Biotechnology, 160, 2401–1030.

    Article  Google Scholar 

  11. Reddy, N. S., Nimmagadda, A., & Rao, K. R. S. S. (2003). African Journal of Biotechnology, 2, 645–648.

    Article  CAS  Google Scholar 

  12. Ito, S., & Horikoshi, K. (2004). Journal of Biological Macromolecules, 4, 3–11.

    CAS  Google Scholar 

  13. Das, S., Singh, S., Sharma, V., & Soni, M. L. (2011). International Journal of Pharma and Bio Sciences, 2, 486–496.

    CAS  Google Scholar 

  14. Mojsov, K. (2012). International Journal of Management, IT and Engineering, 2, 583–609.

    Google Scholar 

  15. Naidu, M. A., & Saranraj, P. (2013). International Journal of Pharmaceutical and Biological Archives, 4, 274–287.

    Google Scholar 

  16. Hasan, F., Shah, A. A., Javed, S., & Hameed, A. (2010). African Journal of Biotechnology, 9, 4836–4844.

    CAS  Google Scholar 

  17. Niyonzima, F. N., & More, S. (2014). Preparative Biochemistry and Biotechnology. doi:10.1080/10826068.2014.907183.

    Google Scholar 

  18. Arikan, B. (2007). Bioresource Technology, 99, 3071–3076.

    Article  Google Scholar 

  19. Saxena, K. R., Dutt, K., Agarwal, L., & Nayyar, P. (2007). Bioresource Technology, 98, 260–265.

    Article  CAS  Google Scholar 

  20. de Carvalho, R. V., Côrrea, T. L. R., da Silva, J. C. M., Mansur, L. R. C. O., & Martins, M. L. L. (2008). Brazilian Journal of Microbiology, 39, 102–107.

    Article  Google Scholar 

  21. Kiran, K. K., & Chandra, T. S. (2008). Applied Microbiology and Biotechnology, 77, 1023–1031.

    Article  CAS  Google Scholar 

  22. Ghorbel, R. E., Maktouf, S., Massoud, E. B., Bejar, S., & Chaabouni, S. E. (2009). Applied Biochemestry and Biotechnology, 157, 50–60.

    Article  CAS  Google Scholar 

  23. Maalej, H., Hmidet, N., Ghorbel-Bellaaj, O., & Nasri, M. (2013). Biotechnology and Bioprocess Engineering, 18, 878–887.

    Article  CAS  Google Scholar 

  24. Roohi, R., Kuddus, M., & Saima, S. (2013). Journalof Biochemical Technology, 4, 636–644.

    CAS  Google Scholar 

  25. Roy, J. K., & Mukherjee, A. K. (2013). Biochemical Engineering Journal, 77, 220–230.

    Article  CAS  Google Scholar 

  26. Chakraborty, S., Khopade, A., Biao, R., Jian, W., Liu, X. Y., Mahadik, K., Chopade, B., Zhang, L., & Kokare, C. (2011). Journal of Molecular Catalysis B: Enzymatic, 68, 52–58.

    Article  CAS  Google Scholar 

  27. Chakraborty, S., Raut, G., Khopade, A., Mahadik, K., & Kokare, C. (2012). Indian Journal of Biotechnology, 11, 427–437.

    CAS  Google Scholar 

  28. Satheeshkumar, G., Chandra, M. S., Mallaiah, K. V., Sreenivasulu, P., & Choi, Y. K. (2010). Biotechnology and Bioprocess Engineering, 15, 1–6.

    Article  Google Scholar 

  29. Shafiei, M., Ziaee, A. A., & Amoozegar, M. A. (2010). Process Biochemistry, 45, 694–699.

    Article  CAS  Google Scholar 

  30. Mukherjee, A. K., Borah, M., & Rai, S. K. (2009). Biochemical Engineering Journal, 43, 149–156.

    Article  CAS  Google Scholar 

  31. Morkeberg, R., Carlsen, M., & Nielsen, J. (1995). Microbiology, 141, 2449–2454.

    Article  Google Scholar 

  32. Malhotra, R., Noorwez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  33. Sohail, M., Ahmad, A., Shahzad, S., & Khan, S. A. (2005). Pakistan Journal of Botany, 37, 155–161.

    Google Scholar 

  34. Lin, L. L., Chyau, C. C., & Hsu, W. H. (1998). Biotechnology and Applied Biochemistry, 28, 61–68.

    CAS  Google Scholar 

  35. Padhiar, J., Das, A., & Bhattacharya, S. (2011). Pakistan Journalof Biological Sciences, 14, 1011–1018.

    Article  CAS  Google Scholar 

  36. Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Enzyme and Microbial Technology, 7, 258–265.

    Article  CAS  Google Scholar 

  37. Kobayashi, T., Hakamada, Y., Hitomi, J., Koike, K., & Ito, S. (1996). Applied Microbiology and Biotechnology, 45, 63–71.

    Article  CAS  Google Scholar 

  38. Michelin, M., Silva, T. M., Benassi, V. M., Peixoto-Nogueira, S. C., Moraes, L. A., Leao, J. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. L. (2010). CarbohydrateResearch, 345, 2348–2353.

    CAS  Google Scholar 

  39. Fitter, J., Herrmann, R., Dencher, N. A., Blume, A., & Hauss, T. (2001). Biochemistry, 40, 10723–10731.

    Article  CAS  Google Scholar 

  40. Simons, J. W., Kosters, H. A., Visschers, R. W., & de Jongh, H. H. (2002). Archives of Biochemistry and Biophysics, 406, 143–152.

    Article  CAS  Google Scholar 

  41. Goyal, N., Gupta, J. K., & Soni, S. K. (2005). Enzyme and Microbiol Technology, 37, 723–734.

    Article  CAS  Google Scholar 

  42. Lévêque, E., Janecek, S., Haye, B., & Belarbi, A. (2000). Enzyme and Microbial Technology, 26, 3–14.

    Article  Google Scholar 

  43. Sindhu, R., Suprabha, G. N., & Shashidhar, S. (2011). Biotechnology, Bioinformatics and Bioengineering, 1, 25–32.

    Google Scholar 

  44. Hmidet, N., Maalej, H., Haddar, A., & Nasri, M. (2010). Applied Biochemistry and Biotechnology, 162, 1018–1030.

    Article  CAS  Google Scholar 

  45. Mitidieri, S., Martinelli, A. H. S., Schrank, A., & Vainstein, M. H. (2006). Bioresource Technology, 97, 1217–1224.

    Article  CAS  Google Scholar 

  46. Bajpai, D., & Tyagi, V. K. (2007). Journal of Oleo Science, 56, 327–340.

    Article  CAS  Google Scholar 

  47. Bano, S., Qader, S. A. U., Aman, A., & Azhar, A. (2009). Indian Journal of Biochemistry and Biophysics, 46, 401–404.

    CAS  Google Scholar 

  48. Kumari, N., Jain, V., & Malhotra, S. (2013). African Journal of Microbiology Research, 7, 5440–5448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil S. More.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niyonzima, F.N., More, S.S. Detergent-Compatible Bacterial Amylases. Appl Biochem Biotechnol 174, 1215–1232 (2014). https://doi.org/10.1007/s12010-014-1144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1144-3

Keywords

Navigation