Skip to main content
Log in

A New α-Galactosidase from Thermoacidophilic Alicyclobacillus sp. A4 with Wide Acceptor Specificity for Transglycosylation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An α-galactosidase gene (gal36A4) of glycosyl hydrolase family 36 was identified in the genome of Alicyclobacillus sp. A4. It contains an ORF of 2,187 bp and encodes a polypeptide of 728 amino acids with a calculated molecular mass of 82.6 kDa. Deduced Gal36A4 shows the typical GH36 organization of three domains—the N-terminal β-sheets, the catalytic (β/α)8-barrels, and the C-terminal antiparallel β-sheet. The gene product was produced in Escherichia coli and showed both hydrolysis and transglycosylation activities. The optimal pH for hydrolysis activity was 6.0, and a stable pH range of 5.0–11.0 was found. The enzyme had a temperature optimum of 60 °C. It is specific for α-1,6-glycosidic linkages and had a K m value of 1.45 mM toward pNPGal. When using melibiose as both donor and acceptor of galactose, Gal36A4 showed the transfer ratio of 23.25 % at 96 h. With respect to acceptor specificity, all tested monosaccharides, disaccharides, and oligosaccharides except for D-xylose and L-arabinose were good acceptors for transglycosylation. Thus, Gal36A4 may find diverse applications in industrial fields, especially in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zechel, D. L., & Withers, S. G. (2000). Accounts of Chemical Research, 33, 11–18.

    Article  CAS  Google Scholar 

  2. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  3. Rigden, D. J. (2002). FEBS Letters, 523, 17–22.

    Article  CAS  Google Scholar 

  4. Comfort, D. A., Bobrov, K. S., Shabalin, K. A., Harris, J. M., Kulminskaya, A. A., Brumer, H., & Kelly, R. M. (2007). Biochemistry, 46, 3319–3330.

    Article  CAS  Google Scholar 

  5. Hinz, S. W. A., Doeswijk-Voragen, C. H. L., Schipperus, R., van den Broek, L. A. M., Vincken, J. P., & Voragen, A. G. J. (2005). Biotechnology and Bioengineering, 93, 122–131.

    Article  Google Scholar 

  6. Goulas, T., Goulas, A., Tzortzis, G., & Gibson, G. R. (2009). Applied Microbiology and Biotechnology, 82, 471–477.

    Article  CAS  Google Scholar 

  7. Kurakake, M., Moriyama, Y., Sunouchi, R., & Nakatani, S. (2011). Food Chemistry, 126, 177–182.

    Article  CAS  Google Scholar 

  8. Cervera-Tison, M., Tailford, L., Fuell, C., Bruel, L., Sulzenbacher, G., Henrissat, B., Berrin, J. G., Fons, M., Giardina, T., & Juge, N. (2012). Applied and Environmental Microbiology, 78, 7720–7732.

    Article  CAS  Google Scholar 

  9. Fredslund, F., Hachem, M. A., Larsen, R. J., Sørensen, P. G., Coutinho, P. M., LoLeggio, L., & Svensson, B. (2011). Journal of Microbiology and Biotechnology, 412, 466–480.

    CAS  Google Scholar 

  10. Patil, A. G. G., & Mulimani, V. H. (2008). Biotechnology and Bioprocess Engineering, 13, 354–359.

    Article  CAS  Google Scholar 

  11. Buja, L. M. (2009). Circulation, 119, 2539–2541.

    Article  Google Scholar 

  12. Bai, Y., Wang, J., Zhang, Z., Yang, P., Shi, P., Luo, H., Meng, K., Huang, H., & Yao, B. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 187–194.

    Article  CAS  Google Scholar 

  13. Bai, Y., Wang, J., Zhang, Z., Shi, P., Luo, H., Huang, H., Feng, Y., & Yao, B. (2010). Journal of Agriculture and Food Chemistry, 58, 1970–1975.

    Article  CAS  Google Scholar 

  14. Bai, Y., Huang, H., Meng, K., Shi, P., Yang, P., Luo, H., Luo, C., Feng, Y., Zhang, W., & Yao, B. (2012). Food Chemistry, 131, 1473–1478.

    Article  CAS  Google Scholar 

  15. Zhang, S., Wang, H., Shi, P., Xu, B., Bai, Y., Luo, H., & Yao, B. (2014). Process Biochemistry. doi:10.1016/j.procbio.2014.05.020.

    Google Scholar 

  16. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Cao, Y., Wang, Y., Luo, H., Shi, P., Meng, K., Zhou, Z., Zhang, Z., & Yao, B. (2009). Journal of Microbiology and Biotechnology, 19, 1295–1300.

    CAS  Google Scholar 

  19. Merceron, R., Foucault, M., Haser, R., Mattes, R., Watzlawick, H., & Gouet, P. (2012). Journal of Biological Chemistry, 287, 39642–39652.

    Article  CAS  Google Scholar 

  20. Puchart, V., & Biely, P. (2005). Biochimica et Biophysica Acta, 1726, 206–216.

    Article  CAS  Google Scholar 

  21. Janika, S., Gernig, A., Murray, P., Fernandes, S., & Tuohy, M. G. (2010). Journal of Microbiology and Biotechnology, 20, 1653–1663.

    Google Scholar 

  22. Wang, H., Luo, H., Li, J., Bai, Y., Huang, H., Shi, P., Fan, Y., & Yao, B. (2010). Bioresource Technology, 101, 8376–8382.

    Article  CAS  Google Scholar 

  23. Du, F., Zhu, M., Wang, H., & Ng, T. B. (2013). Plant Physiology and Biochemistry, 69, 49–53.

    Article  CAS  Google Scholar 

  24. Patil, A. G. G., Praveen, K. S. K., Veerappa, H. M., Yaligara, V., & Kyoung, L. (2010). Journal of Microbiology and Biotechnology, 20, 1546–1554.

    Article  CAS  Google Scholar 

  25. Nakai, H., Baumann, M. J., Petersen, B. O., Westphal, Y., Hachem, M. A., Dilokpimol, A., Duus, J., Schols, H. A., & Svensson, B. (2010). The FEBS Journal, 277, 3538–3551.

    Article  CAS  Google Scholar 

  26. Turner, P., Mamo, G., & Karlsson, E. N. (2007). Microbial Cell Factories, 6, 1–23.

    Article  Google Scholar 

  27. Viana, P. A., de Rezende, S. T., Passos, F. M. L., Oliveira, J. S., Teixeira, K. N., Santos, A. M. C., Bemquerer, M. P., Rosa, J. C., Santoro, M. M., & Guimaraes, V. M. (2009). Journal of Agricultural and Food Chemistry, 57, 2512–2522.

    Article  Google Scholar 

  28. Katrolia, P., Jia, H., Yan, Q., Song, S., Jiang, Z., & Xu, H. (2012). Bioresource Technology, 110, 578–586.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, 2012AA022208), the National Science Foundation for Distinguished Young Scholars of China (31225026), the China National Special Program for GMO Development (2011ZX08011-005), and the China Modern Agriculture Research System (CARS-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, R., Shi, P. et al. A New α-Galactosidase from Thermoacidophilic Alicyclobacillus sp. A4 with Wide Acceptor Specificity for Transglycosylation. Appl Biochem Biotechnol 174, 328–338 (2014). https://doi.org/10.1007/s12010-014-1050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1050-8

Keywords

Navigation