Skip to main content

Advertisement

Log in

The Application of the Starfish Hatching Enzyme for the Improvement of Scar and Keloid Based on the Fibroblast-Populated Collagen Lattice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Various bioactivities of the starfish hatching enzyme (HE) including collagen gel contraction, MMPs activity, hydroxyproline release, and gene regulation based on the fibroblast-populated collagen lattice (FPCL) in three-dimensional medium were investigated for the improvement of scar and keloid. The starfish HE significantly inhibited the collagen gel contraction over 2 days of culture. MMP-2 and MMP-9 activities were also identified by gelatin zymography and RT-PCR products with both HE and collagenase treatments, which resulted in the high amount of hydroxyproline release. The HE treatment on the FPCL significantly inhibited the fibroblast proliferation at 3 days of culture. The LPS-induced NO level and iNOS mRNA expression at low concentrations of HE presented a certain ability to inflammatory response. The COX-2 mRNA from the FPCL indicated no significant inflammation-mediated activity at 5 μg/mL of HE, whereas the cytokines of TNF-α and IL-1β were significantly higher than those of the control. Hence, the starfish hatching enzyme can regulate the fibroblast-populated collagen gel conditions by the contraction, MMP production, inflammatory gene expression, etc. Therefore, the starfish HE could be a potential cosmeceutical to heal the scar and keloid tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HE:

Hatching enzyme

ECM:

Extracellular matrix

MMP:

Matrix metalloprotease

TIMP:

Tissue inhibitors metalloproteases

NO:

Nitric oxide

FPCL:

Fibroblast-populated collagen lattice

iNOS:

Inducible nitric oxide synthase

TNF-α:

Tumor necrosis factor-alpha

IL-1β:

Interleukin-1 beta

TGF:

Transfer growth factor

References

  1. Wolfram, D., Tzankov, A., Pülzl, P., & Piza-Katzer, H. (2009). Hypertrophic scars and keloids-a review of their pathophysiology, risk factors, and therapeutic management. Dermatologic Surgery, 35, 171–181.

    Article  CAS  Google Scholar 

  2. Fujiwara, M., Muragaki, Y., & Ooshima, A. (2005). Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. British Journal of Dermatology, 153, 295–300.

    Article  CAS  Google Scholar 

  3. Abergel, R. P., Pizzurro, D., Meeker, C. A., Lask, G., Matsuoka, L. Y., Minor, R. R., et al. (1985). Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. Journal of Investigative Dermatology, 84, 384–390.

    Article  CAS  Google Scholar 

  4. Nien, Y. D., Han, Y. P., Tawil, B., Chan, L. S., Tuan, T. L., & Garner, W. L. (2003). Fibrinogen inhibits fibroblast-mediated contraction of collagen. Wound Repair and Regeneration, 11, 380–385.

    Article  Google Scholar 

  5. Clark, R. A. (1993). Regulation of fibroplasia in cutaneous wound repair. American Journal of the Medical Sciences, 306, 42–48.

    Article  CAS  Google Scholar 

  6. Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., & Nanney, L. B. (1993). Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds. American Journal of Pathology, 143, 1657–1666.

    CAS  Google Scholar 

  7. Neely, A. N., Clendening, C. E., Gardner, J., Greenhalgh, D. G., & Warden, G. D. (1999). Gelatinase activity in keloids and hypertrophic scars. Wound Repair and Regeneration, 7, 166–171.

    Article  CAS  Google Scholar 

  8. Oriente, A., Fedarko, N. S., Pacocha, S. E., Huang, S. K., Lichtenstein, L. M., & Essayan, D. M. (2000). Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. Journal of Pharmacology and Experimental Therapeutics, 292, 988–994.

    CAS  Google Scholar 

  9. Uchida, G., Yoshimura, K., Kitano, Y., Okazaki, M., & Harii, K. (2003). Tretinoin reverses upregulation of matrix metalloproteinase-13 in human keloid-derived fibroblasts. Experimental Dermatology, 2, 35–42.

    Article  Google Scholar 

  10. Eickelberg, O., Köhler, E., Reichenberger, F., Bertschin, S., Woodtli, T., Erne, P., et al. (1999). American Journal of Physiology, 276, 814–824.

    Google Scholar 

  11. Li, Z. J., & Kim, S. M. (2013). A novel hatching enzyme from starfish Asteriasamurensis: purification, characterization, and cleavage specificity. Applied Biochemistry and Biotechnology, 169, 1386–1396.

    Article  CAS  Google Scholar 

  12. Norway. Aqua Bio Technology, Norway, December. 2014. http://www.aquabiotechnology.com/index.php?id=5.

  13. Li, Z. J. & Kim, S. M. (2014). Structural identification and proteolytic effects of the hatching enzyme from starfish Asterias amurensis. Protein and Peptide Letter. doi:10.2174/0929866521666140221153026.

  14. Sato, M., Ishikawa, O., & Miyachi, Y. (1998). Distinct patterns of collagen gene expression are seen in normal and keloid fibroblasts grown in three-dimensional culture. British Journal of Dermatology, 138, 938–943.

    Article  CAS  Google Scholar 

  15. Fang, Q., Schulte, N. A., Kim, H., Kobayashi, T., Wang, X., Miller-Larsson, A., et al. (2013). Effect of budesonide on fibroblast-mediated collagen gel contraction and degradation. Journal of Inflammation Research, 6, 25–33.

    CAS  Google Scholar 

  16. García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214, 65–69.

    Article  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Creemers, L. B., Jansen, D. C., van Veen-Reurings, A., van den Bos, T., & Everts, V. (1997). Microassay for the assessment of low levels of hydroxyproline. Biotechniques, 22, 656–658.

    CAS  Google Scholar 

  19. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.

    Article  CAS  Google Scholar 

  20. Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. Front Bioscience, 9, 283–289.

    Article  CAS  Google Scholar 

  21. Nagase, H., & Woessner, J. F., Jr. (1999). Minireview: matrix metalloproteinases. The Journal of Biological Chemistry, 274, 21491–21494.

    Article  CAS  Google Scholar 

  22. Kerkvliet, E. H., Docherty, A. J., Beertsen, W., & Everts, V. (1999). Collagen breakdown in soft connective tissue explants is associated with the level of active gelatinase A (MMP-2) but not with collagenase. Matrix Biology, 18, 373–380.

    Article  CAS  Google Scholar 

  23. Creemers, L. B., Jansen, I. D., Docherty, A. J., Reynolds, J. J., Beertsen, W., & Everts, V. (1998). Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue. Matrix Biology, 17, 35–46.

    Article  CAS  Google Scholar 

  24. Yucel, T., Mutnal, A., Fay, K., Fligiel, S. E., Wang, T., Johnson, T., et al. (2005). Matrix metalloproteinase expression in basal cell carcinoma: relationship between enzyme profile and collagen fragmentation pattern. Experimental and Molecular Pathology, 79, 151–160.

    Article  CAS  Google Scholar 

  25. Wang, C., Rong, Y., Ning, F., & Zhang, G. (2011). The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology, 10, 2524–2529.

    Google Scholar 

  26. Ivarsson, M., McWhirter, A., Borg, T. K., & Rubin, K. (1998). Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biology, 16, 409–425.

    Article  CAS  Google Scholar 

  27. Patterson, M. L., Atkinson, S. J., Knäuper, V., & Murphy, G. (2001). Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Letters, 503, 158–162.

    Article  CAS  Google Scholar 

  28. Wang, L., Luo, J., & He, S. (2007). Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release. BMC Cell Biology, 8, 14.

    Article  Google Scholar 

  29. Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G., & Parks, W. C. (1997). The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. Journal of Cell Biology, 137, 1445–1457.

    Article  CAS  Google Scholar 

  30. Chen, X. G., Wang, Z., Liu, W. S., & Park, H. J. (2002). The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 23, 4609–4614.

    Article  CAS  Google Scholar 

  31. Kauh, Y. C., Rouda, S., Mondragon, G., Tokarek, R., diLeonardo, M., Tuan, R. S., et al. (1997). Major suppression of pro-alpha1(I) type I collagen gene expression in the dermis after keloid excision and immediate intrawound injection of triamcinolone acetonide. Journal of the American Academy of Dermatology, 37, 586–589.

    Article  CAS  Google Scholar 

  32. Boyadjiev, C., Popchristova, E., & Mazgalova, J. (1995). Histomorphologic changes in keloids treated with Kenacort. Journal of Trauma, 38, 299–302.

    Article  CAS  Google Scholar 

  33. Pereira, B. J., Shapiro, L., King, A. J., Falagas, M. E., Strom, J. A., & Dinarello, C. A. (1994). Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney International, 45, 890–896.

    Article  CAS  Google Scholar 

  34. Lavnikova, N., & Laskin, D. L. (1995). Unique patterns of regulation of nitric oxide production in fibroblasts. Journal of Leukocyte Biology, 58, 451–458.

    CAS  Google Scholar 

  35. Aktan, F. (2004). iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75, 639–653.

    Article  CAS  Google Scholar 

  36. Tayler, B. S., & Geller, D. A. (2001). Regulation of the inducible nitric oxide synthase (iNOS) gene. In D. Salvemini, T. R. Billiar, Y. Vodovotz (Eds.), Nitric oxide and inflammation (pp. 1–27). Birkhauser Verlag: Springer.

  37. Cuzzocre, S. (2011). Role of nitric oxide and reactive oxygen species in arthritis. In D. Salvemini, T. R. Billiar, Y. Vodovotz (Eds.), Nitric oxide and inflammation (pp. 145–160). Birkhauser Verlag: Springer.

  38. Kang, K. W., Wagley, Y., Kim, H. W., Pokharel, Y. R., Chung, Y. Y., Chang, I. Y., et al. (2007). Novel role of IL-8/SIL-6R signaling in the expression of inducible nitric oxide synthase (iNOS) in murine B16, metastatic melanoma clone F10.9 cells. Free Radical Biology and Medicine, 42, 215–227.

    Article  CAS  Google Scholar 

  39. Bao, H. H., & You, S. G. (2011). Molecular characteristics of water-soluble extracts from Hypsizigusmarmoreus and their in vitro growth inhibition of various cancer cell lines and immunomodulatory function in Raw 264.7 cells. Bioscience Biotechnology Biochemistry, 75, 891–898.

    Article  CAS  Google Scholar 

  40. Furuya, A., Asano, K., Shoji, N., Hirano, K., Hamasaki, T., & Suzaki, H. (2010). Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro. Journal of Inflammation, 7, 56.

    Article  CAS  Google Scholar 

  41. Liew, F. Y., & Cox, F. E. (1991). Nonspecific defence mechanism: the role of nitric oxide. Immunology Today, 12, 17–21.

    Article  CAS  Google Scholar 

  42. Coon, D., Gulati, A., Cowan, C., & He, J. (2007). The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. Journal of Endodontics, 33, 432–436.

    Article  Google Scholar 

  43. Zhu, Y. K., Liu, X. D., Sköld, C. M., Wang, H., Kohyama, T., Wen, F. Q., et al. (2001). Collaborative interactions between neutrophil elastase and metalloproteinases in extracelullar matrix degradation in three-dimensional collagen gels. Respiratory Research, 2, 300–305.

    Article  CAS  Google Scholar 

  44. Fang, Q., Liu, X., Al-Mugotir, M., Kobayashi, T., Abe, S., Kohyama, T., et al. (2006). Thrombin and TNF-alpha/IL-1beta synergistically induce fibroblast-mediated collagen gel degradation. American Journal of Respiratory Cell and Molecular Biology, 35, 714–721.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Sea Grant Program (GangWon Sea Grant) funded by the Ministry of Oceans and Fisheries in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Moo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.J., Kim, S.M. The Application of the Starfish Hatching Enzyme for the Improvement of Scar and Keloid Based on the Fibroblast-Populated Collagen Lattice. Appl Biochem Biotechnol 173, 989–1002 (2014). https://doi.org/10.1007/s12010-014-0901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0901-7

Keywords

Navigation