Skip to main content
Log in

Molecular Modification of Protein A to Improve the Elution pH and Alkali Resistance in Affinity Chromatography

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protein A of Staphylococcus aureus has been widely used as an affinity ligand for the purification of immunoglobulin. However, the low elution pH and the sensitivity to alkaline condition restricted the large-scale application of antibody purification. To overcome these disadvantages, the B domain was selected and mutated to Z domain and the recombinant Protein A was reconstructed by linking five Z domains. First, a section of six glycines was inserted into the second loop of Z domain, Z (6G). This increased the elution pH to 4.0–5.0. Then, the site-specific mutagenesis was conducted by replacing the 23rd asparagines to threonine and 30th phenylalanine to alanine, Z (N23T, F30A). These mutations made the recombinant Protein A shown a higher alkaline resistance than the nature Protein A. The work confirmed the modification of Protein A and exhibited the characteristics of recombinant Staphylococcal Protein A for antibody purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sjöquist, J., Movitz, J., Johansson, I. B., & Hjelm, H. (1972). Localization of protein A in the bacteria. European Journal of Biochemistry, 30, 190–194.

    Article  Google Scholar 

  2. Björk, I., Petersson, B. Å., & Sjöquist, J. (1972). Some physicochemical properties of protein A from Staphylococcus aureus. European Journal of Biochemistry, 29, 579–584.

    Article  Google Scholar 

  3. Sjöholm, I. (1975). Protein A from Staphylococcus aureus. Spectropolarmetric and spectrophotometric studies. European Journal of Biochemistry, 51, 55–61.

    Article  Google Scholar 

  4. Moks, T., Abrahmsén, L., Nilsson, B., Hellman, U., Sjöquist, J., & Uhlén, M. (1986). Staphylococcal protein A cosists of five IgG-binding domains. European Journal of Biochemistry, 156, 637–643.

    Article  CAS  Google Scholar 

  5. Lindmark, R., Thorén-Tolling, K., & Sjöquist, J. (1983). Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. Journal of Immunological Methods, 62, 1–13.

    Article  CAS  Google Scholar 

  6. Goding, J. W. (1978). Use of staphylococcal protein A as an immunological reagent. Journal of Immunological Methods, 20, 241–253.

    Article  CAS  Google Scholar 

  7. Hale, G., Drumm, A., Harrison, P., & Phillips, J. (1994). Repeated cleaning of protein A affinity column with sodium hydroxide. Journal of Immunological Methods, 171, 15–21.

    Article  CAS  Google Scholar 

  8. Deinenhofer, J. (1981). Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of Protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry, 20, 2361–2370.

    Article  Google Scholar 

  9. Tashiro, M., Tejero, R., Zimmerman, D. E., Celda, B., Nilsson, B., & Montelione, G. T. (1997). High-resolution solution NMR structure of the Z domain of Staphylococcal Protein A. Journal of Molecular Biology, 272, 573–590.

    Article  CAS  Google Scholar 

  10. Brunet, A. P., Huang, E. S., Huffine, M. E., Loeb, J. E., Weltman, R. J., & Hecht, M. H. (1993). The role of turns in the structure of an α-helical protein. Nature, 364, 355–358.

    Article  CAS  Google Scholar 

  11. Castagnoli, L., Vetriani, C., & Cesareni, G. (1994). Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop. Journal of Molecular Biology, 237, 378–387.

    Article  CAS  Google Scholar 

  12. Predki, P. L., & Regan, L. (1995). Redesigning the topology of a four-helix-bundle protein: monomeric Rop. Biochemistry, 34, 9834–9839.

    Article  CAS  Google Scholar 

  13. Nagi, A. D., & Regan, L. (1997). An inverse correlation between loop length and stability in a four-helix-bundle protein. Folding and Design, 2, 67–75.

    Article  CAS  Google Scholar 

  14. Nagi, A. D., Anderson, K. S., & Regan, L. (1999). Using loop length variants to dissect the folding pathway of a four-helix-bundle protein. Journal of Molecular Biology, 286, 257–265.

    Article  CAS  Google Scholar 

  15. Gülich, S., Uhlén, M., & Hober, S. (2000). Protein engineering of an IgG-binding domain allows milder elution conditions during affinity chromatography. Journal of Biotechnology, 76, 233–244.

    Article  Google Scholar 

  16. Cedergren, L., Andersson, R., Jansson, B., Uhlén, M., & Nilsson, B. (1993). Mutational analysis of the interaction between staphylococcal protein A and human IgG1. Protein Engineering, Design & Selection, 6, 441–448.

    Article  CAS  Google Scholar 

  17. Kotsuka, T., Akanuma, S., Tomuro, M., Yamagishi, A., & Oshima, T. (1996). Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. Journal of Bacteriology, 178, 723–727.

    CAS  Google Scholar 

  18. Sieber, V., Plückthun, A., & Schmid, F. X. (1998). Selecting proteins with improved stability by a phage-based method. Nature Biotechnology, 16, 955–960.

    Article  CAS  Google Scholar 

  19. Gülich, S., Linhult, M., Uhlén, M., Nygren, P. Å., & Hober, S. (2000). Stability towards alkaline conditions can be engineered into a protein ligand. Journal of Biotechnology, 80, 169–178.

    Article  Google Scholar 

  20. Kossiakoff, A. A. (1988). Tertiary structure is a principal determinant to protein deamidation. Science, 240, 191–194.

    Article  CAS  Google Scholar 

  21. Lura, R., & Schirch, V. (1988). Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues. Biochemistry, 27, 7671–7677.

    Article  CAS  Google Scholar 

  22. Kosky, A. A., Razzaq, U. O., Treuheit, M. J., & Brems, D. N. (1999). The effects of alpha-helix on the stebility of Asn residues: deamidation rates in peptides of varying helicity. Protein Science, 8, 2519–2523.

    Article  CAS  Google Scholar 

  23. Geiger, T., & Clarke, S. (1987). Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linker reactions that contribute to protein degradation. Journal of Biological Chemistry, 262, 785–794.

    CAS  Google Scholar 

  24. Linhult, M., Gülich, S., Gräslund, T., Simon, A., Karlsson, M., Sjöberg, A., Nord, K., & Hobe, S. (2004). Improving the tolerance of a Protein A analogue to repeated alkaline exposures using a bypass mutagenesis approach. Proteins, 55, 407–416.

    Article  CAS  Google Scholar 

  25. Higuchi, R., Krummel, B., & Saiki, R. K. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Research, 16, 351–7367.

    Article  Google Scholar 

  26. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  27. Johansson, B. L., Belew, M., Eriksson, S., Glad, G., Lind, O., Maloisel, J. L., & Norrman, N. (2003). Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. Journal of Chromatography. A, 1016, 21–33.

    Article  CAS  Google Scholar 

  28. Cuatrecasas, P., & Parikh, I. (1972). Adsorbents for affinity chromatography. Use of N-hydrox ysuccinimide esters of agarose. Biochemistry, 11, 2291–2299.

    Article  CAS  Google Scholar 

  29. Van Sommeren, A. P. G., Machielsen, P. A. G. M., & Gribnau, T. C. J. (1993). Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage. Journal of Chromatography. A, 639, 23–31.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, 2012AA021201), the National Natural Science Foundation of China (21206054), the Research Fund for the Doctoral Program of Higher Education of China (20110093120001), the 111 Project (No. 111-2-06), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, HF., Liang, ZD., Wang, SL. et al. Molecular Modification of Protein A to Improve the Elution pH and Alkali Resistance in Affinity Chromatography. Appl Biochem Biotechnol 172, 4002–4012 (2014). https://doi.org/10.1007/s12010-014-0818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0818-1

Keywords

Navigation