Skip to main content
Log in

Metabolic Engineering of Escherichia coli for Production of 2-phenylethanol from Renewable Glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2-Phenylethanol (2-PE) is an important aromatic alcohol with a rose-like odor and has wide applications. The present work aims to construct a synthetic pathway for 2-PE synthesis from glucose in Escherichia coli. First, the genes adh1 (encoding alcohol dehydrogenase) and kdc (encoding phenylpyruvate decarboxylase) from Saccharomyces cerevisiae S288c and Pichia pastoris GS115 were investigated in E. coli, respectively, and single overexpression of adh1 or kdc significantly increased 2-PE accumulation. When co-overexpressing adh1 and kdc, 2-PE was increased up to 130 from 57 mg/L. Furthermore, by optimizing coordinated expression of the four committed genes aroF, pheA, adh1 and kdc, 2-PE was improved to 285 mg/L which was the highest production of 2-PE by the recombinant E. coli system. In addition, our results also demonstrated that the tyrB gene, which encodes aromatic-amino-acid transaminase, plays an important role on 2-PE synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Etschmann, M. M., Bluemke, W., Sell, D., & Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Applied Microbiology and Biotechnology, 59, 1–8.

    Article  CAS  Google Scholar 

  2. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86–89.

    Article  CAS  Google Scholar 

  3. Xu, P., Hua, D., & Ma, C. (2007). Microbial transformation of propenylbenzenes for natural flavour production. Trends in Biotechnology, 25, 571–576.

    Article  CAS  Google Scholar 

  4. Hua, D., & Xu, P. (2011). Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 29, 654–660.

    Article  CAS  Google Scholar 

  5. Jin, J. Z., Li, H., & Zhang, J. (2010). Improved synthesis of (S)-1-phenyl-2-propanol in high concentration with coupled whole cells of Rhodococcus erythropolis and Bacillus subtilis on preparative scale. Applied Biochemistry and Biotechnology, 162, 2075–2086.

    Article  CAS  Google Scholar 

  6. Jollivet, N., Bézenger, M. C., Vayssier, Y., & Belin, J. M. (1992). Production of volatile compounds in liquid cultures by six strains of coryneform bacteria. Applied Microbiology and Biotechnology, 36, 790–794.

    Article  CAS  Google Scholar 

  7. Lomascolo, A., Lesage-Meessen, L., Haon, M., Navarro, D., Antona, C., Faulds, C., & Marcel, A. (2001). Evaluation of the potential of Aspergillus niger species for the bioconversion of L-phenylalanine into 2-phenylethanol. World Journal of Microbiology and Biotechnology, 17, 99–102.

    Article  CAS  Google Scholar 

  8. Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I., & Von Stockar, U. (2003). Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology, 32, 212–223.

    Article  CAS  Google Scholar 

  9. Eshkol, N., Sendovski, M., Bahalul, M., Katz-Ezov, T., Kashi, Y., & Fishman, A. (2009). Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. Journal of Applied Microbiology, 106, 534–542.

    Article  CAS  Google Scholar 

  10. Seo, W. T., & Ahn, K. C. (2003). Production of phenylethanol from L-phenylalanine by Candida sp S-8. Food Science and Biotechnology, 12, 644–648.

    CAS  Google Scholar 

  11. Serp, D., von Stockar, U., & Marison, I. W. (2003). Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization. Biotechnology and Bioengineering, 82, 103–110.

    Article  CAS  Google Scholar 

  12. Wang, H., Dong, Q. F., Meng, C., Shi, X. A., & Guo, Y. H. (2011). A continuous and adsorptive bioprocess for efficient production of the natural aroma chemical 2-phenylethanol with yeast. Enzyme and Microbial Technology, 48, 404–407.

    Article  CAS  Google Scholar 

  13. Stark, D., Munch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2002). Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18, 514–523.

    Article  CAS  Google Scholar 

  14. Celinska, E., Kubiak, P., Bialas, W., Dziadas, M., & Grajek, W. (2013). Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. Journal of Industrial Microbiology & Biotechnology, 40, 389–392.

    Article  CAS  Google Scholar 

  15. Chen, X., Zhou, L., Kangming, T., Kumar, A., Singh, S., Prior, B. A., Wang, Z. (2013). Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnology Advances.

  16. Keasling, J. D. (2008). Synthetic biology for synthetic chemistry. ACS Chemical Biology, 3, 64–76.

    Article  CAS  Google Scholar 

  17. Goss, R. J., Shankar, S., & Fayad, A. A. (2012). The generation of “unnatural” products: synthetic biology meets synthetic chemistry. Natural Product Reports, 29, 870–889.

    Article  CAS  Google Scholar 

  18. Atsumi, S., Wu, T. Y., Machado, I. M., Huang, W. C., Chen, P. Y., Pellegrini, M., & Liao, J. C. (2010). Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Molecular Systems Biology, 6, 449.

    Article  Google Scholar 

  19. Smith, K. M., & Liao, J. C. (2011). An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metabolic Engineering, 13, 674–681.

    Article  CAS  Google Scholar 

  20. Woodruff, L. B., Boyle, N. R., & Gill, R. T. (2013). Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metabolic Engineering, 17, 1–11.

    Article  CAS  Google Scholar 

  21. Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., & Sakai, K. (2012). Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Applied and Environmental Microbiology, 78, 6203–6216.

    Article  CAS  Google Scholar 

  22. Gosset, G. (2009). Production of aromatic compounds in bacteria. Current Opinion in Biotechnology, 20, 651–658.

    Article  CAS  Google Scholar 

  23. Brynildsen, M. P., & Liao, J. C. (2009). An integrated network approach identifies the isobutanol response network of Escherichia coli. Molecular Systems Biology, 5, 277.

    Article  Google Scholar 

  24. Zheng, Y. N., Li, L. Z., Xian, M., Ma, Y. J., Yang, J. M., Xu, X., & He, D. Z. (2009). Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology, 36, 1127–1138.

    Article  CAS  Google Scholar 

  25. Woodruff, L. B., Pandhal, J., Ow, S. Y., Karimpour-Fard, A., Weiss, S. J., Wright, P. C., & Gill, R. T. (2013). Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. Metabolic Engineering, 15, 124–133.

    Article  CAS  Google Scholar 

  26. Zhang, H. F., Chong, H. Q., Ching, C. B., Song, H., & Jiang. R. R. (2012). Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Applied Microbiology and Biotechnology, 94, 1107–1117.

    Google Scholar 

  27. Liu, H., Liu, K., Yan, M., Xu, L., & Ouyang, P. (2011). gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Applied Biochemistry and Biotechnology, 164, 1150–1159.

    Article  CAS  Google Scholar 

  28. Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., Hadi, M. Z., & Mukhopadhyay, A. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology, 7, 487.

    Article  Google Scholar 

  29. Reyes, L. H., Almario, M. P., & Kao, K. C. (2011). Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. Plos One, 6.

  30. Minty, J. J., Lesnefsky, A. A., Lin, F., Chen, Y., Zaroff, T. A., Veloso, A. B., Xie, B., McConnell, C. A., Ward, R. J., Schwartz, D. R., Rouillard, J. M., Gao, Y., Gulari, E., & Lin, X. N. (2011). Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microbial Cell Factories, 10, 18.

    Article  CAS  Google Scholar 

  31. Ting, C. N., Wu, J., Takahashi, K., Endo, A., & Zhao, H. (2012). Screened butanol-tolerant Enterococcus faecium capable of butanol production. Applied Biochemistry and Biotechnology, 168, 1672–1680.

    Article  CAS  Google Scholar 

  32. Hirata, H., Ohnishi, T., Ishida, H., Tomida, K., Sakai, M., Hara, M., & Watanabe, N. (2012). Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. Journal of Plant Physiology, 169, 444–451.

    Article  CAS  Google Scholar 

  33. Jarboe, L. R. (2011). YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Applied Microbiology and Biotechnology, 89, 249–257.

    Article  CAS  Google Scholar 

  34. Russell, D. W., Smith, M., Williamson, V. M., & Young, E. T. (1983). Nucleotide sequence of the yeast alcohol dehydrogenase II gene. The Journal of Biological Chemistry, 258, 2674–2682.

    CAS  Google Scholar 

  35. Juminaga, D., Baidoo, E. E., Redding-Johanson, A. M., Batth, T. S., Burd, H., Mukhopadhyay, A., Petzold, C. J., & Keasling, J. D. (2012). Modular engineering of L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 78, 89–98.

    Article  CAS  Google Scholar 

  36. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13, 492–498.

    Article  CAS  Google Scholar 

  37. Wu, J., Du, G., Zhou, J., & Chen, J. (2013). Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 16, 48–55.

    Article  Google Scholar 

  38. Lerner, C. G., & Inouye, M. (1990). Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Research, 18, 4631.

    Article  CAS  Google Scholar 

  39. Lim, H. N., Lee, Y., & Hussein, R. (2011). Fundamental relationship between operon organization and gene expression. Proceedings of the National Academy of Sciences of the United States of America, 108, 10626–10631.

    Article  CAS  Google Scholar 

  40. Kovacs, K., Hurst, L. D., & Papp, B. (2009). Stochasticity in Protein Levels Drives Colinearity of Gene Order in Metabolic Operons of Escherichia coli. Plos Biology, 7.

  41. Zhou, H., Liao, X., Wang, T., Du, G., & Chen, J. (2010). Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresource Technology, 101, 4151–4156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major State Basic Research Development Program of China (973 Program, 2014CB745103, 2013CB733602), the National Natural Science Foundation of China (31200020), the National High Technology Research and Development Program of China (2012AA021201), the National Science Foundation for Post-doctoral Scientists of China (2013 M540414), the Jiangsu Planned Projects for Postdoctoral Research Funds (1301010B), the 111 Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z., Zhang, C., Du, G. et al. Metabolic Engineering of Escherichia coli for Production of 2-phenylethanol from Renewable Glucose. Appl Biochem Biotechnol 172, 2012–2021 (2014). https://doi.org/10.1007/s12010-013-0659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0659-3

Keywords

Navigation