Skip to main content
Log in

Screened Butanol-Tolerant Enterococcus faecium Capable of Butanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to the complex mechanisms involved in butanol-induced stress response, butanol tolerance phenotype is difficult to engineer even in microorganisms with well-defined genetic backgrounds. We therefore aimed to isolate butanol-tolerant microorganisms from environmental samples as potential alternative hosts for butanol production. Soil samples collected were subjected to butanol stress. A microbial strain capable of 2.5–3 % (w/v) butanol tolerance was isolated and identified as Enterococcus faecium by 16S rDNA analysis. The isolate grew readily under both aerobic and anaerobic conditions and was capable of producing butanol anaerobically. In comparison with the obligate anaerobe Clostridium acetobutylicum, the growth under both aerobic and anaerobic conditions of the isolated strain, together with no detection of butyrate and lack of two-phase fermentation suggests different metabolic networks from the obligate anaerobe C. acetobutylicum. Under anaerobic condition, butanol reached up to 0.4 g l−1 in a batch culture without heterologous introduction of butanol biosynthetic pathway. Besides butanol tolerance, the isolated E. faecium IB1 showed high tolerance to 10 % (w/v) ethanol and 3 % (w/v) isobutanol. With distinct features including high butanol tolerance and natural butanol production, the isolated E. faecium IB1 with minimum metabolic engineering can be explored as a potential host for butanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

References

  1. Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., et al. (2008). Metabolic Engineering, 10, 305–311.

    Article  CAS  Google Scholar 

  2. Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Microbial Cell Factories, 7, 36.

    Article  Google Scholar 

  3. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2003). World Journal of Microbiology and Biotechnology, 19, 595–603.

    Article  CAS  Google Scholar 

  4. Papoutsakis, E. T. (2008). Current Opinion in Biotechnology, 19, 420–429.

    Article  CAS  Google Scholar 

  5. Shin, J. H., Yoon, J. H., Lee, S. H., & Park, T. H. (2010). Bioresource Technology, 101, S53–S58.

    Article  CAS  Google Scholar 

  6. Janssen, H., Grimmler, G., Ehrenreich, A., Bahl, H., Fischer, R. (2012). Journal of Biotechnology. http://ac.els-cdn.com/S0168165612002337/dx. doi.org/10.1016/j.jbiotec.2012.03.027

  7. Rutherford, B. J., Robert, H., Dahl, R. H., Price, R. E., Szmidt, H. L., Benke, P. I., et al. (2010). Applied and Environmental Microbiology, 76(6), 1935–1945.

    Article  CAS  Google Scholar 

  8. Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., et al. (2011). Molecular Systems Biology, 7, 487.

    Article  Google Scholar 

  9. Atsumi, S., Wu, T.-Y., Eckl, E.-M., Hawkins, S. D., Buelter, T., & Liao, J. C. (2010). Applied Microbiology and Biotechnology, 85, 651–657.

    Article  CAS  Google Scholar 

  10. Rühl, J., Schmid, A., & Blank, L. M. (2009). Applied and Environmental Microbiology, 75, 4653–4656.

    Article  Google Scholar 

  11. Knoshaug, E. P., & Zhang, M. (2009). Applied Biochemistry and Biotechnology, 153, 13–20.

    Article  CAS  Google Scholar 

  12. Li, J., Zhao, J. B., Zhao, M., Yang, Y. L., Jiang, W. H., & Yang, S. (2010). Letters in Applied Microbiology, 50, 373–379.

    Article  CAS  Google Scholar 

  13. Bhavani, M., et al. (2012). International Journal of Biological Engineering, 2, 18–22.

    Google Scholar 

  14. Bowles, L. K., & Ellefson, W. L. (1985). Applied and Environmental Microbiology, 50, 1165–1170.

    CAS  Google Scholar 

  15. Jain, M. K., Gleeson, J., Upreti, A., & Upreti, G. C. (1978). Biochimica et Biophysica Acta (BBA)—Biomembranes, 509, 1–8.

    Article  CAS  Google Scholar 

  16. Ingram, L. O. (1976). Journal of Bacteriology, 125, 670–678.

    CAS  Google Scholar 

  17. Torres, S., et al. (2011). Biotechnology Advances, 20, 442–452.

    Article  Google Scholar 

  18. Liu, S., & Qureshi, N. (2009). New Biotechnology, 26, 117–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Christoph Ottenheim for his critical reading of the manuscript. This work was funded by Agency for Science, Technology and Research (A*STAR) in Singapore ICES/12-174A01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, C.N.W., Wu, J., Takahashi, K. et al. Screened Butanol-Tolerant Enterococcus faecium Capable of Butanol Production. Appl Biochem Biotechnol 168, 1672–1680 (2012). https://doi.org/10.1007/s12010-012-9888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9888-0

Keywords

Navigation