Skip to main content
Log in

The Challenging Measurement of Protein in Complex Biomass-Derived Samples

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Measurement of the protein content in samples from production of lignocellulosic bioethanol is an important tool when studying the adsorption of cellulases. Several methods have been used for this, and after reviewing the literature, we concluded that one of the most promising assays for simple and fast protein measurement on this type of samples was the ninhydrin assay. This method has also been used widely for this purpose, but with two different methods for protein hydrolysis prior to the assay—alkaline or acidic hydrolysis. In samples containing glucose or ethanol, there was significant interference from these compounds when using acid hydrolysis, which was not the case when using the alkaline hydrolysis. We evaluated the interference from glucose, cellulose, xylose, xylan, lignin and ethanol on protein determination of BSA, Accellerase® 1500 and Cellic® CTec2. The experiments demonstrated that the presence of cellulose, lignin and glucose (above 50 g/kg) could significantly affect the results of the assay. Comparison of analyses performed with the ninhydrin assay and with a CN analyser revealed that there was good agreement between these two analytical methods, but care has to be taken when applying the ninhydrin assay. If used correctly, the ninhydrin assay can be used as a fast method to evaluate the adsorption of cellulases to lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henrissat, B. (1994). Cellulose, 1, 169–196.

    Article  CAS  Google Scholar 

  2. Ooshima, H., Burns, D. S., & Converse, A. O. (1990). Biotechnology and Bioengineering, 36, 446–452.

    Article  CAS  Google Scholar 

  3. Ghose, T. K. (1987). Pure Appl. Chem., 59, 257–268.

    CAS  Google Scholar 

  4. Wood, T. M., & Bhat, M. K. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  5. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  6. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  7. Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leeuwen, M. F., & Pilnik, W. (1987). Biotechnology and Bioengineering, 30, 251–257.

    Article  CAS  Google Scholar 

  8. Moloney, A., & Coughlan, M. P. (1983). Biotechnology and Bioengineering, 25, 271–280.

    Article  CAS  Google Scholar 

  9. Mes-Hartree, M., Hogan, C. M., & Saddler, J. N. (1987). Biotechnology and Bioengineering, 30, 558–564.

    Article  CAS  Google Scholar 

  10. Pribowo, A., Arantes, V., & Saddler, J. N. (2012). Enzyme Microb. Technol., 50, 195–203.

    CAS  Google Scholar 

  11. Nakagame, S., Chandra, R., & Saddler, J. N. (2010). Biotechnology and Bioengineering, 105, 871–879.

    CAS  Google Scholar 

  12. Tu, M., & Saddler, J. N. (2010). Applied Biochemistry and Biotechnology, 161, 274–287.

    Article  CAS  Google Scholar 

  13. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 23, 1130–1137.

    Article  CAS  Google Scholar 

  14. Zhu, Z., Sathitsuksanoh, N., & Zhang, Y. H. P. (2009). Analyst, 134, 2267–2272.

    Article  CAS  Google Scholar 

  15. Xu, F., Ding, H., Osborn, D., Tejirian, A., Brown, K., Albano, W., et al. (2008). Journal of Molecular Catalysis B: Enzymatic, 51, 42–48.

    Article  CAS  Google Scholar 

  16. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  17. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 23, 398–406.

    Article  CAS  Google Scholar 

  18. Singh, A., Kumar, P. K. R., & Schügerl, K. (1991). Journal of Biotechnology, 18, 205–212.

    Article  CAS  Google Scholar 

  19. Qi, B., Chen, X., Su, Y., & Wan, Y. (2011). Bioresource Technology, 102, 2881–2889.

    Article  CAS  Google Scholar 

  20. Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M., Kilburn, D., et al. (2005). Applied Biochemistry and Biotechnology, 121, 163–170.

    Article  Google Scholar 

  21. Yu, A. H. C., Lee, D., & Saddler, J. N. (1993). Biotechnology Techniques, 7, 713–718.

    Article  CAS  Google Scholar 

  22. Lee, D., Yu, A. H. C., & Saddler, J. N. (1995). Biotechnology and Bioengineering, 45, 328–336.

    Article  CAS  Google Scholar 

  23. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Biotechnol. Biofuels, 2(2009).

  24. Kjeldahl, J. (1883). Zeitschrift für Analytische Chemie, 22, 366–382.

    Article  Google Scholar 

  25. Kumar, R., & Wyman, C. E. (2008). Enzyme Microb. Technol., 42, 426–433.

    CAS  Google Scholar 

  26. Pierce, J., & Suelter, C. H. (1977). Analytical Biochemistry, 81, 478–480.

    Article  CAS  Google Scholar 

  27. Lovrien, R. and Matulis, D. (2005) in Current protocols in Microbiology: Assays for Total Protein, John Wiley & Sons, Inc., pp. A.3A.1-14.

  28. Peterson, G. L. (1979). Analytical Biochemistry, 100, 201–220.

    Article  CAS  Google Scholar 

  29. Banik, S. P., Pal, S., Ghorai, S., Chowdhury, S., & Khowala, S. (2009). Analytical Biochemistry, 386, 113–115.

    Article  CAS  Google Scholar 

  30. Börjesson, J., Peterson, R., & Tjerneld, F. (2007). Enzyme Microb. Technol., 40, 754–762.

    Google Scholar 

  31. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Applied Biochemistry and Biotechnology, 156, 557–562.

    Article  CAS  Google Scholar 

  32. Compton, S. J., & Jones, C. G. (1985). Mechanism of Dye response and Interference in the Bradford Protein Assay. Analytical Biochemistry, 151, 369–374.

    Article  CAS  Google Scholar 

  33. Kurabi, A., Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Robinson, J., et al. (2005). Applied Biochemistry and Biotechnology, 121, 219–230.

    Article  Google Scholar 

  34. Friedman, M. (2004). Journal of Agricultural and Food Chemistry, 52, 385–406.

    Article  CAS  Google Scholar 

  35. Starcher, B. (2001). Analytical Biochemistry, 292, 125–129.

    Article  CAS  Google Scholar 

  36. Petersen, M. Ø., Larsen, J., & Thomsen, M. H. (2009). Biomass and Bioenergy, 33, 834–840.

    Article  CAS  Google Scholar 

  37. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  38. van Boekel, M. A. J. S. (2001). Nahrung/Food, 45, 150–159.

    Article  Google Scholar 

  39. Martins, S., Jongen, W. M. F., & van Boekel, M. (2000). Trends Food Sci. Technol., 11, 364–373.

    CAS  Google Scholar 

  40. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.

    Article  CAS  Google Scholar 

  41. Rødsrud, G., Lersch, M., & Sjöde, A. (2012). Biomass and Bioenergy, 46, 46–59.

    Article  Google Scholar 

  42. Janker-Obermeier, I., Sieber, V., Faulstich, M., & Schieder, D. (2012). Industrial Crops and Products, 39, 198–203.

    Article  CAS  Google Scholar 

  43. Laroque, D., Inisan, C., Berger, C., Vouland, É., Dufosse, L., & Guérard, F. (2008). Food Chemistry, 111, 1032–1042.

    Article  CAS  Google Scholar 

  44. Yu, A. H. C., Lee, D., & Saddler, J. N. (1995). Biotechnology and Applied Biochemistry, 21, 203–216.

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Kathrine B. Hansen and Tanya Jensen for technical assistance on reference analyses of nitrogen on elemental analyser, Georg Ørnskov Rønsch for his help on the experimental design of 52 experiment, Kit Kellebjerg Mogensen and Martin Dan Jeppesen for valuable discussions and Vibeke Ørsted Bonde Nielsen for technical assistance on ninhydrin assay on the reference samples. The industrial Ph.D. project is financially supported by the Danish Agency for Science, Technology, and Innovation, grant no. 09–053694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Østergaard Haven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haven, M.Ø., Jørgensen, H. The Challenging Measurement of Protein in Complex Biomass-Derived Samples. Appl Biochem Biotechnol 172, 87–101 (2014). https://doi.org/10.1007/s12010-013-0466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0466-x

Keywords

Navigation