Skip to main content
Log in

Alternative Low-Cost Additives to Improve the Saccharification of Lignocellulosic Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A potential strategy to mitigate problems related to unproductive adsorption of enzymes onto lignin during the saccharification of lignocellulosic biomass is the addition of lignin-blocking agents to the hydrolysis reaction medium. However, there is a clear need to find more cost-effective additives for use in large-scale processes. Here, selected alternative low-cost additives were evaluated in the saccharification of steam-exploded sugarcane bagasse using a commercial enzymatic cocktail. The addition of soybean protein, tryptone, peptone, and maize zein had positive effects on glucose release during the hydrolysis, with gains of up to 36% when 8% (w/w) soybean protein was used. These improvements were superior to those obtained using bovine serum albumin (BSA), a much more expensive protein that has been widely reported for such an application. Moreover, addition of soybean protein led to a saving of 48 h in the hydrolysis, corresponding to a 66% decrease in the reactor operation time required. In order to achieve the same hydrolysis yield without the soybean additive, the enzyme loading would need to be increased by 50%. FTIR spectroscopy and nitrogen elemental analysis revealed that the additives probably acted to reduce unproductive binding of cellulolytic enzymes onto the lignin portion of the sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), 1083–1087. https://doi.org/10.1002/bit.24370.

    Article  CAS  PubMed  Google Scholar 

  2. Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Microbial Biotechnology, 9(5), 585–594. https://doi.org/10.1111/1751-7915.12387.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johnson, E. (2016). Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 10(2), 164–174. https://doi.org/10.1002/bbb.1634.

    Article  CAS  Google Scholar 

  4. Liu, G., Zhang, J., & Bao, J. (2016). Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous aspen plus modeling. Bioprocess and Biosystems Engineering, 39(1), 133–140. https://doi.org/10.1007/s00449-015-1497-1.

    Article  CAS  PubMed  Google Scholar 

  5. Hong, Y., Nizami, A. S., Pour Bafrani, M., Saville, B. A., & Maclean, H. L. (2013). Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels, Bioproducts and Biorefining, 7(3), 303–313. https://doi.org/10.1002/bbb.1393.

    Article  CAS  Google Scholar 

  6. Ko, J. K., Ximenes, E., Kim, Y., & Ladisch, M. R. (2015). Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 112(3), 447–456. https://doi.org/10.1002/bit.25359.

    Article  CAS  PubMed  Google Scholar 

  7. Rahikainen, J. L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O. J., & Kruus, K. (2013). Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270–278. https://doi.org/10.1016/j.biortech.2013.01.075.

    Article  CAS  PubMed  Google Scholar 

  8. Li, X., & Zheng, Y. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35(4), 466–489. https://doi.org/10.1016/j.biotechadv.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  9. Lou, H., Wang, M., Lai, H., Lin, X., Zhou, M., Yang, D., & Qiu, X. (2013). Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresource Technology, 146, 478–484. https://doi.org/10.1016/j.biortech.2013.07.115.

    Article  CAS  PubMed  Google Scholar 

  10. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364. https://doi.org/10.1016/S0141-0229(02)00134-5.

    Article  CAS  Google Scholar 

  11. Zheng, Y., Pan, Z., Zhang, R., Wang, D., & Jenkins, B. (2008). Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Applied Biochemistry and Biotechnology, 146(1–3), 231–248. https://doi.org/10.1007/s12010-007-8035-9.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94(4), 611–617. https://doi.org/10.1002/bit.20750.

    Article  CAS  PubMed  Google Scholar 

  13. Börjesson, J., Engqvist, M., Sipos, B., & Tjerneld, F. (2007). Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme and Microbial Technology, 41(1–2), 186–195. https://doi.org/10.1016/j.enzmictec.2007.01.003.

    Article  CAS  Google Scholar 

  14. Florencio, C., Badino, A. C., & Farinas, C. S. (2016). Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Bioresource Technology, 221, 172–180. https://doi.org/10.1016/j.biortech.2016.09.039.

    Article  CAS  PubMed  Google Scholar 

  15. Kaar, W. E., & Holtzapple, M. T. (1998). Benefits from tween during enzymic hydrolysis of corn Stover. Biotechnology and Bioengineering, 59(4), 419–427.

    Article  CAS  PubMed  Google Scholar 

  16. Cannella, D., & Jørgensen, H. (2014). Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnology and Bioengineering, 111(1), 59–68. https://doi.org/10.1002/bit.25098.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, Y., Kreke, T., Ko, J. K., & Ladisch, M. R. (2015). Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnology and Bioengineering, 112(4), 677–687. https://doi.org/10.1002/bit.25465.

    Article  CAS  PubMed  Google Scholar 

  18. Gouveia, E. R., do Nascimento, R. T., Souto-Maior, A. M., & Rocha, G. J. d. M. (2009). Validation of methodology for the chemical characterization of sugar cane bagasse. Quimica Nova, 32(6), 1500–1503. https://doi.org/10.1590/S0100-40422009000600026.

    Article  CAS  Google Scholar 

  19. Wang, Z., Li, Y., Jiang, L., Qi, B., & Zhou, L. (2014). Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry, 2014, 1–10. https://doi.org/10.1155/2014/475389.

    Article  CAS  Google Scholar 

  20. Pereira, S. C., Maehara, L., Machado, C. M. M., & Farinas, C. S. (2016). Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renewable Energy, 87, 607–617. https://doi.org/10.1016/j.renene.2015.10.054.

    Article  CAS  Google Scholar 

  21. Harrison, M. D., Zhang, Z., Shand, K., O’Hara, I. M., Doherty, W. O. S., & Dale, J. L. (2013). Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures. Bioresource Technology, 148, 105–113. https://doi.org/10.1016/j.biortech.2013.08.099.

    Article  CAS  PubMed  Google Scholar 

  22. Militello, V., Casarino, C., Emanuele, A., Giostra, A., Pullara, F., & Leone, M. (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry, 107(2), 175–187. https://doi.org/10.1016/j.bpc.2003.09.004.

    Article  CAS  PubMed  Google Scholar 

  23. Corrales, R. C. N. R., Mendes, F. M., Perrone, C., Sant’Anna, C., de Souza, W., Abud, Y., Bon, E. P. S., & Ferreira-Leitão, V. (2012). Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnology for Biofuels, 5(1), 1–10. https://doi.org/10.1186/1754-6834-5-36.

    Article  CAS  Google Scholar 

  24. Bhagia, S., Kumar, R., & Wyman, C. E. (2017). Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase. Carbohydrate Polymers, 157, 1940–1948. https://doi.org/10.1016/j.carbpol.2016.11.085.

    Article  CAS  PubMed  Google Scholar 

  25. Méndez Arias, J., de Oliveira Moraes, A., Modesto, L. F. A., de Castro, A. M., & Pereira, N. (2017). Addition of surfactants and non-hydrolytic proteins and their influence on enzymatic hydrolysis of pretreated sugarcane bagasse. Applied Biochemistry and Biotechnology, 181(2), 593–603. https://doi.org/10.1007/s12010-016-2234-1.

    Article  CAS  PubMed  Google Scholar 

  26. Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences, 37(4), 205–211. https://doi.org/10.1073/pnas.37.4.205.

    Article  CAS  Google Scholar 

  27. Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Advances in Protein Chemistry, 34(C), 167–339. https://doi.org/10.1016/S0065-3233(08)60520-3.

    Article  CAS  PubMed  Google Scholar 

  28. Shahid, M., & Chawla, H. M. (2017). Dansylated adenine as a molecular probe for exploring hydrophobic pocket of bovine serum albumin (BSA) and its utility for mercury ion recognition. Journal of Luminescence, 188, 460–464. https://doi.org/10.1016/j.jlumin.2017.05.005.

    Article  CAS  Google Scholar 

  29. Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45(C), 153–203. https://doi.org/10.1016/S0065-3233(08)60640-3.

    Article  CAS  PubMed  Google Scholar 

  30. Badley, R. A., Atkinson, D., Hauser, H., Oldani, D., Green, J. P., & Stubbs, J. M. (1975). The structure, physical and chemical properties of the soy bean protein glycinin. Biochimica et Biophysica Acta (BBA) - Protein Structure, 412(2), 214–228. https://doi.org/10.1016/0005-2795(75)90036-7.

    Article  CAS  Google Scholar 

  31. Argos, P., Pedersen, K., Marks, M. D., & Larkins, B. A. (1982). A structural model for maize zein proteins. Journal of Biological Chemistry, 257(17), 9984–9990.

    CAS  PubMed  Google Scholar 

  32. Guan, H., Diao, X., Jiang, F., Han, J., & Kong, B. (2018). The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry, 245, 89–96. https://doi.org/10.1016/j.foodchem.2017.08.081.

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoud, M. I., Malone, W. T., & Cordle, C. T. (1992). Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 57(5), 1223–1229. https://doi.org/10.1111/j.1365-2621.1992.tb11304.x.

    Article  CAS  Google Scholar 

  34. Wu, W. U., Hettiarachchy, N. S., & Qi, M. (1998). Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. Journal of the American Oil Chemists’ Society, 75(7), 845–850.

    Article  CAS  Google Scholar 

  35. Kumar, R., & Wyman, C. E. (2009). Effect of additives on the digestibility of corn Stover solids following pretreatment by leading technologies. Biotechnology and Bioengineering, 102(6), 1544–1557. https://doi.org/10.1002/bit.22203.

    Article  CAS  PubMed  Google Scholar 

  36. Rocha-Martín, J., Martinez-Bernal, C., Pérez-Cobas, Y., Reyes-Sosa, F. M., & García, B. D. (2017). Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 244(Pt 1), 48–56. https://doi.org/10.1016/j.biortech.2017.06.132.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H., Kobayashi, S., & Mochidzuki, K. (2015). Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials. Bioresource Technology, 190, 373–380. https://doi.org/10.1016/j.biortech.2015.04.112.

    Article  CAS  PubMed  Google Scholar 

  38. Saini, J. K., Patel, A. K., Adsul, M., & Singhania, R. R. (2016). Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renewable Energy, 98, 29–42. https://doi.org/10.1016/j.renene.2016.03.089.

    Article  CAS  Google Scholar 

  39. Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262. https://doi.org/10.1002/bit.25349.

    Article  CAS  PubMed  Google Scholar 

  40. Nakagame, S., Chandra, R. P., & Saddler, J. N. (2010). The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 105(5), 871–879. https://doi.org/10.1002/bit.22626.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank Embrapa, CNPq (Process 401182/2014-2), CAPES, and FAPESP (Processes 2014/19000-3, 2016/10636-8, and 2017/13931-3) (all from Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane S. Farinas.

Ethics declarations

Competing interests

The authors declare they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brondi, M.G., Vasconcellos, V.M., Giordano, R.C. et al. Alternative Low-Cost Additives to Improve the Saccharification of Lignocellulosic Biomass. Appl Biochem Biotechnol 187, 461–473 (2019). https://doi.org/10.1007/s12010-018-2834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2834-z

Keywords

Navigation