Skip to main content
Log in

Improvement of Regio-Specific Production of Myricetin-3-O-α-l-Rhamnoside in Engineered Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Myricetin is an important flavonol whose medically important properties include activities as an antioxidant, anticarcinogen, and antimutagen. The solubility, stability, and other biological properties of the compounds can be enhanced by conjugating aglycon with sugar moieties. The type of sugar moiety also plays a significant role in the biological and physical properties of the natural product glycosides. Reconstructed Escherichia coli containing thymidine diphosphate-α-l-rhamnose sugar gene cassette and Arabidopsis-derived glycosyltransferase were used for rhamnosylation of myricetin. Myricetin (100 μM) was exogenously supplemented to induced cultures of engineered E. coli. The formation of target product—myricetin-3-O-α-l-rhamnoside—was confirmed by chromatographic and NMR analyses. The yield of product was improved by using various mutants and methylated cyclodextrin as a molecular carrier for myricetin in combination with E. coli M3G3. The maximal yield of product is 55.6 μM (3.31-fold higher than the control E. coli MG3) and shows 55.6 % bioconversion of substrate under optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nirmala, P., & Ramanathan, M. (2011). Journal of Experimental Therapeutics and Oncology, 9, 101–108.

    CAS  Google Scholar 

  2. Robak, J., & Gryglewski, R. J. (1988). Biochemical Pharmacology, 37, 837–841.

    Article  CAS  Google Scholar 

  3. Abalea, V., Cillard, J., Dubos, M. P., Sergent, O., Cillard, P., & Morel, I. (1999). Free Radical Biology and Medicine, 26, 1457–1466.

    Article  CAS  Google Scholar 

  4. Meotti, F. C., Senthilmohan, R., Harwood, D. T., Missau, F. C., Pizzolatti, M. G., & Kettle, A. J. (2008). Free Radical Biology and Medicine, 44, 109–120.

    Article  CAS  Google Scholar 

  5. Pereira, M., Siba, I. P., Chioca, L. R., Correia, D., Vital, M. A., Pizzolatti, M. G., et al. (2011). Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1636–1644.

    Article  CAS  Google Scholar 

  6. Shimosaki, S., Tsurunaga, Y., Itamura, H., & Nakamura, M. (2011). Natural Product Research, 25, 374–380.

    Article  CAS  Google Scholar 

  7. Sun, G. B., Qin, M., Ye, J. X., Pan, R. L., Meng, X. B., Wang, M., Luo, Y., Li, Z. Y., Wang, H. W., & Sun, X. B. (2013). Toxicology and Applied Pharmacology. doi:10.1016/j.taap.2013.04.015.

    Google Scholar 

  8. Ren, G., Hou, J., Fang, Q., Sun, H., Liu, X., Zhang, L., et al. (2012). Glycoconjugate Journal, 29, 425–432.

    Article  CAS  Google Scholar 

  9. Weis, M., Lim, E. K., Bruce, N., & Bowles, D. (2006). Angewandte Chemie International Edition, 45, 3534–3538.

    Article  CAS  Google Scholar 

  10. Thibodeaux, C. J., & Melacon, C. E. (2008). Angewandte Chemie International Edition, 47, 9814–9859.

    Article  CAS  Google Scholar 

  11. Jones, P., Messner, B., Nakajima, J., Schaffner, A. R., & Saito, K. (2003). Journal of Biological Chemistry, 278, 43910–43918.

    Article  CAS  Google Scholar 

  12. Lim, E. K., Ashford, D. A., & Bowles, D. J. (2006). ChemBioChem, 7, 1181–1185.

    Article  CAS  Google Scholar 

  13. Lim, E. K., Ashford, D. A., Hou, B., Jackson, R. G., & Bowles, D. J. (2004). Biotechnology and Bioengineering, 87, 623–631.

    Article  CAS  Google Scholar 

  14. Trantas, E., Panopoulos, N., & Ververidis, F. (2009). Metabolic Engineering, 11, 355–366.

    Article  CAS  Google Scholar 

  15. Yoon, J. A., Kim, B. G., Lee, W. J., Lim, Y., Chong, Y., & Ahn, J. H. (2012). Applied and Environmental Microbiology, 78, 4256–4262.

    Article  CAS  Google Scholar 

  16. Williams, G. J., Yang, J., Zhang, C., & Thorson, J. S. (2011). ACS Chemical Biology, 6, 95–100.

    Article  CAS  Google Scholar 

  17. Kren, V., & Martínková, L. (2001). Current Medicinal Chemistry, 8, 1303–1328.

    Article  CAS  Google Scholar 

  18. Pandey, R. P., Malla, S., Simkhada, D., Kim, B. G., & Sohng, J. K. (2012). Applied Microbiology and Biotechnology, 97, 1889–1901.

    Article  Google Scholar 

  19. Simkhada, D., Kim, E. M., Lee, H. C., & Sohng, J. K. (2009). Molecules and Cells, 28, 397–401.

    Article  CAS  Google Scholar 

  20. Simkhada, D., Lee, H. C., & Sohng, J. K. (2010). Biotechnology and Bioengineering, 107, 154–162.

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  22. http://openwetware.org/wiki/NanoBio:_Protocol_for_gene_knockout

  23. Liu, S. Y., & Rosazza, J. P. (1998). Applied and Environmental Microbiology, 64, 3972–3976.

    CAS  Google Scholar 

  24. Liu, S. Y., & Rosazza, P. N. (1995). Journal of Liquid Chromatography, 18, 4081–4095.

    Article  CAS  Google Scholar 

  25. Shen, Y., Wang, M., Zhang, L., Ma, Y., Ma, B., Zheng, Y., et al. (2011). Applied Microbiology and Biotechnology, 90, 1995–2003.

    Article  CAS  Google Scholar 

  26. Bergonzi, M. C., Bilia, A. R., Di Bari, L., Mazzi, G., & Vincieri, F. F. (2007). Bioorganic and Medicinal Chemistry Letters, 17, 5744–5748.

    Article  CAS  Google Scholar 

  27. Donova, M. V., Nikolayeva, V. M., Dovbnya, D. V., Gulevskaya, S. A., & Suzina, N. E. (2007). Microbiology, 153, 1981–1992.

    Article  CAS  Google Scholar 

  28. Ma, S. X., Chen, W., Yang, X. D., Zhang, N., Wang, S. J., Liu, L., et al. (2012). Journal of Pharmaceutical and Biomedical Analysis, 67–68, 193–200.

    Article  Google Scholar 

  29. Truong, V. T., Boyer, R. R., McKinney, J. M., O’Keefe, S. F., & William, R. C. (2010). Journal of Food Protection, 73, 92–96.

    Google Scholar 

  30. Wen, J., Liu, B., Yuan, E., Ma, Y., & Zhu, Y. (2010). Molecules, 15, 4401–4407.

    Article  CAS  Google Scholar 

  31. Xiao, Y., Yang, L., Mao, P., Yuan, J., Deng, Y., & Qu, L. (2012). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 298–302.

    Article  CAS  Google Scholar 

  32. Ficarra, R., Tommassini, S., Raneri, D., Calabro, M. L., Di Bella, M. R., Rustichelli, C., et al. (2002). Journal of Pharmaceutical and Biomedical Analysis, 29, 1005–1014.

    Article  CAS  Google Scholar 

  33. Kim, B. G., Kim, H. J., & Ahn, J. H. (2012). Journal of Agriculture and Food Chemistry, 60, 11143–11148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ00948302), Rural Development Administration and supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031960), Republic of Korea; grants from the National Foundation for Science and Technology Development—(NAFOSTED), Vietnam (Grant no: 104.01-2010.22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 6942 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuan, N.H., Pandey, R.P., Thuy, T.T.T. et al. Improvement of Regio-Specific Production of Myricetin-3-O-α-l-Rhamnoside in Engineered Escherichia coli . Appl Biochem Biotechnol 171, 1956–1967 (2013). https://doi.org/10.1007/s12010-013-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0459-9

Keywords

Navigation