Skip to main content
Log in

Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin

  • Published:
Molecules and Cells

Abstract

Flavonoids are a group of polyphenolic compounds that have been recognized as important due to their physiological and pharmacological roles and their health benefits. Glycosylation of flavonoids has a wide range of effects on flavonoid solubility, stability, and bioavailability. We previously generated the E. coli BL21 (DE3) Δpgi host by deleting the glucose-phosphate isomerase (Pgi) gene in E. coli BL21 (DE3). This host was further engineered for whole-cell biotransformation by integration of galU from E. coli K12, and expression of calS8 (UDP-glucose dehydrogenase) and calS9 (UDP-glucuronic acid decarboxylase) from Micromonospora echinospora spp. calichensis and arGt-4 (7-O-glycosyltransferase) from Arabidopsis thaliana to form E. coli (US89Gt-4), which is expected to produce glycosylated flavonoids. To test the designed system, the engineered host was fed with naringenin as a substrate, and naringenin 7-O-xyloside, a glycosylated naringenin product, was detected. Product was verified by HPLCLC/MS and ESI-MS/MS analyses. The reconstructed host can be applied for the production of various classes of glycosylated flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asres, K., Seyoum, A., Veeresham, C., Bucar, F., and Gibbons, S. (2005). Naturally derived anti-HIV agents. Phytother. Res. 19, 557–581.

    Article  CAS  PubMed  Google Scholar 

  • Benavente-García, O., Castillo, J., Marín, F.R., Ortuño, A., and Del Río, J.A. (1997). Uses and properties of Citrus flavonoids. J. Agric. Food Chem. 45, 4505–4515.

    Article  Google Scholar 

  • Bililign, T., Shepard, E.M., Ahlert, J., and Thorson, J.S. (2002). On the origin of deoxypentoses: Evidence to support a glucose progenitor in the biosynthesis of calicheamicin. ChemBioChem 11, 1143–1146.

    Article  Google Scholar 

  • Borrelli, F., and Izzo, A.A. (2000). The plant kingdom as a source of anti-ulcer remedies. Phytother. Res. 14, 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Boue, M.S., Carter-Wientjes, H.C., Shih, Y.B., and Cleveland, E.T. (2003). Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Bowles, D., Lim, E-K., Poppenberger B., and Vaistij F.E. (2006). Glycosyltransferase of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567–597.

    Article  CAS  PubMed  Google Scholar 

  • Brugliera, F., Holton, T.A., Stevenson, T.W., Farcy, E., Lu, C., and Cornish, E.C. (1992). Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J. 5, 81–92.

    Article  Google Scholar 

  • Buslig, B.S., and Manthey, J.A. (2002). Eds; Flavonoids in cell function. (New York, NY: Kluwer Academic/Plenum Publishers).

    Google Scholar 

  • Cao, G., Sofic, E., and Prior, R.L. (1997). Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22, 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.J., Games, D.E., Jones, J., and Kidwell, H. (2003). Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26, 1623–1636.

    Article  CAS  Google Scholar 

  • Cushnie, T.P.T., and Lamb, A.J. (2005). Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agent. 26, 343–356.

    Article  CAS  Google Scholar 

  • Ferreres, F., Llorach, R., and Gil-Izquierdo, A. (2004). Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass. Spectrum. 39, 1–15.

    Article  Google Scholar 

  • Fraenkel, D.G. (1968). The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking glucose phosphate isomeraseand glucose 6-phosphate dehydrogenase. J. Biol. Chem. 243, 6451–6457.

    CAS  PubMed  Google Scholar 

  • He, X.M., and Liu, H-W. (2002). Formation of unusual sugars: mechanistic studies and biosynthetic studies and biosynthetic applications. Annu. Rev. Biochem. 71, 701–754.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., and Walker, S. (2002). Remarkable structural similarities between diverse glycosyltransferases. Chem. Biol. 9, 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.P., Son, K.H., Chang, H.W., and Kang, S.S. (2004). Antiinflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96, 229–245.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.H., Kim, B.G., Park, Y., Ko, J.H., Lim, C.E., Lim, J., Lim, Y., and Ahn, J-H. (2006). Characterization of flavonoid 7-O-glucosyltrans-ferase from Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 70, 1471–1477.

    Article  CAS  PubMed  Google Scholar 

  • Ko, J.H., Kim, B.G., and Ahn, J.-H. (2006). Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258, 263–268.

    Article  CAS  Google Scholar 

  • Kris-Etherton, P.M., Hecker, K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., and Etherton, T.D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113, 71–88.

    Article  Google Scholar 

  • Kris-Etherton, P.M., Lefevre, M., Beecher, G.R., Gross, M.D., Keen, C.L., and Etherton, T.D. (2004). Bioactive compounds in nutrition and health-research methodologies for stablishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Ann. Rev. Nutr. 24, 511–538.

    Article  CAS  Google Scholar 

  • Lee, Y.U., Kawasaki, I., Lim, Y., Oh, W.S., Paik, Y.K., and Shim, Y.H. (2008). Inhibition of developmental processes by Flavone in Caenorhabditis elegans and its application to the pinewood nematode, Bursaphelenchus xylophilus. Mol. Cells 26, 171–174.

    CAS  PubMed  Google Scholar 

  • Ma, Y.L., Li, Q.M., Van den Heuvel, H., and Claeys, M. (1997). Characterization of flavone and flavonol aglycones by collisioninduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrum 11, 1357–1364.

    Article  CAS  Google Scholar 

  • Manach, C., and Donovan, J.L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res. 38, 771–785.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, E., and Kandaswami, C. (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 43, 1167–1179.

    Article  CAS  PubMed  Google Scholar 

  • Simkhada, D., Oh, T.J., Pageni, B.B., Lee, H.C., Liou, K.K., and Sohng, J.K. (2009). Characterization of CalS9 in the biosynthesis of UDP-xylose and production of xylosyl-attached hybrid compound. Appl. Microbiol. Biotechnol. 83, 885–895.

    Article  CAS  PubMed  Google Scholar 

  • So, F.V., Guthrie, A.F., Chambers, A.F., Moussa, M., and Carroll, K.K. (1996). Inhibition of human breast cancer cell proliferation and delay of mammary tumorogenesis by flavonoids and citrus juices. Nutr. Cancer 26, 167–181.

    Article  CAS  PubMed  Google Scholar 

  • Stobiecki, M. (2000). Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Photochemistry 54, 237–256.

    Article  CAS  Google Scholar 

  • Tahara, S. (2007). A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71, 1387–1404.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T. (1997). Chemoprevention of human cancer: biology and therapy. Crit. Rev. Oncol. Hematol. 25, 139–174.

    Article  CAS  PubMed  Google Scholar 

  • Tijburg, L.B.M., Mattern, T., Folts, J.D., Weisgerber, U.M., and Katan, M.B. (1997). Tea flavonoids and cardiovascular diseases: a review. Crit. Rev. Food Sci. 37, 771–785.

    Article  CAS  Google Scholar 

  • Valenzuela, A., Sanhueza, J., and Nieto, S. (2003). Natural antioxidants in functional foods: from food safety to health benefits. Grasas Aceites 54, 295–303.

    Google Scholar 

  • Yochum, L., Kushi, L.H., Meyer, K., and Folsom, A.R. (1999). Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am. J. Epidemiol. 149, 943–949.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

About this article

Cite this article

Simkhada, D., Kim, E., Lee, H.C. et al. Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin. Mol Cells 28, 397–401 (2009). https://doi.org/10.1007/s10059-009-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0135-7

Keywords

Navigation