Skip to main content
Log in

Enzymatic Hydrolysis and Succinic Acid Fermentation from Steam-Exploded Corn Stalk at High Solid Concentration by Recombinant Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Steam-exploded corn stalk biomass was used as the substrate for succinic acid production via lignocellulose enzymatic hydrolysis and fermentation. Succinic acid fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). For the washed steam-exploded corn stalk at 30 % substrate concentration, i.e., 30 % water-insoluble solids (WIS), enzymatic hydrolysis yielded 97.5 g/l glucose solution and a cellulose conversion of 73.6 %, thus a high succinic acid level up to 38.6 g/l. With the unwashed steam-exploded corn stalk, though a cellulose conversion of 71.2 % was obtained in hydrolysis at 30 % solid concentration (27.9 % WIS), its hydrolysate did not ferment at all, and the hydrolysate of 25 % solid loading containing 3.8 g/l acetic acid and 168.2 mg/l furfural exerted a strong inhibition on succinic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, R., Liang, L., Chen, K., Ma, J., Jiang, M., Wei, P., et al. (2012). Applied Microbiology and Biotechnology, 94, 959–968.

    Article  CAS  Google Scholar 

  2. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., et al. (2010). Nature, 463, 559–563.

    Article  CAS  Google Scholar 

  3. Galaction, A. I., Rotaru, R., Kloetzer, L., Vlysidis, A., Webb, C., Turnea, M., et al. (2011). Journal of Microbiology and Biotechnology, 21, 1257–1263.

    Article  CAS  Google Scholar 

  4. Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., et al. (2012). Bioresource Technology, 116, 366–371.

    Article  CAS  Google Scholar 

  5. Litsanov, B., Brocker, M., & Bott, M. (2012). Applied and Environmental Microbiology, 78, 3325–3337.

    Article  CAS  Google Scholar 

  6. Li, Q., Li, W., Wang, D., Liu, B., Tang, H., Yang, M., et al. (2010). Applied Biochemistry and Biotechnology, 160, 438–445.

    Article  CAS  Google Scholar 

  7. Chen, K., Zhang, H., Miao, Y., Wei, P., & Chen, J. (2011). Enzyme and Microbial Technology, 48, 339–344.

    Article  CAS  Google Scholar 

  8. Zheng, P., Fang, L., Xu, Y., Dong, J. J., Ni, Y., & Sun, Z. H. (2010). Bioresource Technology, 101, 7889–7894.

    Article  CAS  Google Scholar 

  9. Lin, C. S. K., Luque, R., Clark, J. H., Webb, C., & Du, C. (2012). Biofuels, Bioproducts and Biorefining, 6, 88–104.

    Article  CAS  Google Scholar 

  10. Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., et al. (2010). Bioresource Technology, 101, 3292–3294.

    Article  CAS  Google Scholar 

  11. Du, C., Lin, S. K. C., Koutinas, A., Wang, R., Dorado, P., & Webb, C. (2008). Bioresource Technology, 99, 8310–8315.

    Article  CAS  Google Scholar 

  12. Rudolf, A., Alkasrawi, M., Zacchi, G., & Liden, G. (2005). Enzyme and Microbial Technology, 37, 195–204.

    Article  CAS  Google Scholar 

  13. Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  14. Dien, B. S., Li, X. L., Iten, L. B., Jordan, D. B., Nichols, N. N., O'Bryan, P. J., et al. (2006). Enzyme and Microbial Technology, 39, 1137–1144.

    Article  CAS  Google Scholar 

  15. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2006). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  Google Scholar 

  16. Wang, D., Li, Q., Li, W., Xing, J., & Su, Z. (2009). Enzyme and Microbial Technology, 45, 491–497.

    Article  CAS  Google Scholar 

  17. Wang, D., Li, Q., Li, W., Liu, Q. F., Xing, J., & Su, Z. (2008). Journal of Biotechnology, 136, 26–27.

    Article  Google Scholar 

  18. Gokarn, R. R., Eiteman, M. A., & Altman, E. (1998). Biotechnology Letters, 20, 795–798.

    Article  CAS  Google Scholar 

  19. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  20. Yoo, C., Kuo, M., & Kim, T. (2012). Process Biochemistry, 47, 319–326.

    Article  CAS  Google Scholar 

  21. Zhang, K., Agrawal, M., Harper, J., Chen, R., & Koros, W. (2011). Industrial and Engineering Chemistry Research, 50, 14055–14060.

    Article  CAS  Google Scholar 

  22. Yang, X., Zhang, S., Zuo, Z., Men, X., & Tian, S. (2011). Bioresource Technology, 102, 7840–7844.

    Article  CAS  Google Scholar 

  23. Horn, S. J., & Eijsink, V. G. H. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 1157–1163.

    Article  CAS  Google Scholar 

  24. Zhu, M., Li, P., Gong, X., & Wang, J. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 671–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the National Science Foundation of China (No. 21206175, and 21106191) were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Dong.

Additional information

Dexi Wu and Qiang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Li, Q., Wang, D. et al. Enzymatic Hydrolysis and Succinic Acid Fermentation from Steam-Exploded Corn Stalk at High Solid Concentration by Recombinant Escherichia coli . Appl Biochem Biotechnol 170, 1942–1949 (2013). https://doi.org/10.1007/s12010-013-0319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0319-7

Keywords

Navigation