Skip to main content
Log in

In Situ Biphasic Extractive Fermentation for Hexanoic Acid Production from Sucrose by Megasphaera elsdenii NCIMB 702410

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hexanoic acid production by a bacterium using sucrose as an economic carbon source was studied under conditions in which hexanoic acid was continuously extracted by liquid–liquid extraction. Megasphaera elsdenii NCIMB 702410, selected from five M. elsdenii strains, produced 4.69 g l−1 hexanoic acid in a basal medium containing sucrose. Production increased to 8.19 g l−1 when the medium was supplemented by 5 g l−1 sodium butyrate. A biphasic liquid–liquid extraction system with 10 % (v/v) alamine 336 in oleyl alcohol as a solvent was evaluated in a continuous stirred-tank reactor held at pH 6. Over 90 % (w/w) of the hexanoic acid in a 0.5 M aqueous solution was transferred to the extraction solvent within 10 h. Cell growth was not significantly inhibited by direct contact of the fermentation broth with the extraction solvent. The system produced 28.42 g l−1 of hexanoic acid from 54.85 g l−1 of sucrose during 144 h of culture, and 26.52 and 1.90 g l−1 of hexanoic acid was accumulated in the extraction solvent and the aqueous fermentation broth, respectively. The productivity and yield of hexanoic acid were 0.20 g l−1 h−1 and 0.50 g g−1 sucrose, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levy, P. F., Sanderson, J. E., Ashare, E. & de Riel, S. R. (1983). In Wise, D. L. (Ed.), CRC liquid fuels developments (pp. 159–188). Boca Raton: CRC

  2. Aly, M., & Baumgarten, E. (2001). Applied catalysis A: general, 210, 1–12.

    Article  CAS  Google Scholar 

  3. Wasewar, K. L., & Shende, D. Z. (2010). Journal of Chemical & Engineering Data, 55, 4121–4125.

    Article  CAS  Google Scholar 

  4. Gervajio, G. C. (2005). In Shahidi, F. (Ed.), Bailey’s industrial oil and fat products, vol. 6. New York: Wiley

  5. Kenealy, W. R., Cao, Y., & Weimer, P. J. (1995). Applied Microbiology and Biotechnology, 44, 507–513.

    Article  CAS  Google Scholar 

  6. Holdeman, L. V., Cato, E. P., & Moore, W. E. C. (1977). Anaerobe laboratory manual, (4th ed.). Blacksburg: Virginia Polytechnic Institute and State University.

    Google Scholar 

  7. Barker, H. A., & Taha, S. M. (1942). Journal of Bacteriology, 43, 347–363.

    CAS  Google Scholar 

  8. Kenealy, W. R., & Waselefsky, D. M. (1985). Archives of Microbiology, 141, 187–194.

    Article  CAS  Google Scholar 

  9. Jeon, B. S., Kim, B. C., Um, Y. & Sang, B. I. (2010). Applied Microbiology and Biotechnology, 88, 1161–1167.

    Google Scholar 

  10. Rogosa, M. (1971). International Journal of Systematic Bacteriology, 21, 187–189.

    Article  Google Scholar 

  11. Marounek, M., Fliegrova, K., & Bartos, S. (1989). Applied and Environmental Microbiology, 55, 1570–1573.

    CAS  Google Scholar 

  12. Giesecke, D., Wiesmayr, S., & Ledinek, M. (1970). Journal of General Microbiology, 64, 123–126.

    Article  CAS  Google Scholar 

  13. Stanton, T. B., & Humphrey, S. B. (2003). Applied and Environmental Microbiology, 69, 3874–3882.

    Article  CAS  Google Scholar 

  14. Sugihara, P. T., Sutter, V. L., Attebery, H. R., Bricknell, K. S., & Finegold, S. M. (1974). Applied Microbiology, 27, 274–275.

    CAS  Google Scholar 

  15. Soto-Cruz, O., Chavez-Rivera, R., & Saucedo-Castaneda, G. (2001). Brazilian Archives of Biology and Technology, 44, 179–184.

    Article  CAS  Google Scholar 

  16. Counotte, G. H., Prins, R. A., Janssen, R. H., & Debie, M. J. (1981). Applied and Environmental Microbiology, 42, 649–655.

    CAS  Google Scholar 

  17. Tsukahara, T., Hashizume, K., Koyama, H., & Ushida, K. (2006). Animal Science Journal, 77, 454–461.

    Article  CAS  Google Scholar 

  18. Kim, Y. J., Liu, R. H., Rychlik, J. L., & Russell, J. B. (2002). Journal of Applied Microbiology, 92, 976–982.

    Article  CAS  Google Scholar 

  19. Khan, M. A. (2006). PhD thesis, Electronic Publication, Victoria University, Melbourne, Australia

  20. Dekishima, Y., Lan, E. I., Shen, C. R., Cho, K. M., & Liao, J. C. (2011). Journal of the American Chemical Society, 133, 11399–11401.

    Article  CAS  Google Scholar 

  21. Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I., & Liao, J. C. (2012). Metabolic Engineering, 14, 504–511.

    Article  CAS  Google Scholar 

  22. Hino, T., Miyazaki, K., & Kuroda, S. (1991). Journal of General and Applied Microbiology, 37, 121–129.

    Article  CAS  Google Scholar 

  23. Russell, J. B. (1992). Journal of Applied Bacteriology, 73, 363–370.

    Article  CAS  Google Scholar 

  24. Wasewar, K. L., & Shende, D. Z. (2011). Journal of Chemical & Engineering Data, 56, 288–297.

    Article  CAS  Google Scholar 

  25. Roddick, F. A., & Britz, M. L. (1997). Journal of Chemical Technology and Biotechnology, 69, 383–391.

    Article  CAS  Google Scholar 

  26. Helsel, R. W. (1977). Chemical Engineering Progress, 73, 55–59.

    CAS  Google Scholar 

  27. Kertes, A. S., & King, C. J. (1986). Biotechnology and Bioengineering, 28, 269–282.

    Article  CAS  Google Scholar 

  28. Wu, Z., & Yang, S. T. (2003). Biotechnology and Bioengineering, 82, 93–102.

    Article  CAS  Google Scholar 

  29. Zigova, J., Sturdik, E., Vandak, D., & Schlosser, S. (1999). Process Biochemistry, 34, 835–843.

    Article  CAS  Google Scholar 

  30. Weimer, P. J., & Stevenson, D. M. (2012). Applied Microbiology and Biotechnology, 94, 461–466.

    Article  CAS  Google Scholar 

  31. Jeon, B. S., Um, Y. S., Lee, S. M., Lee, S. Y., Kim, H. J., Kim, Y. H., et al. (2008). Energy & Fuels, 22, 83–86.

    Article  CAS  Google Scholar 

  32. Paredes, C. J., Alsaker, K. V., & Papoutsakis, E. T. (2005). Nature Reviews Microbiology, 3, 969–978.

    Google Scholar 

  33. Yang, S. T., White, S. A., & Hsu, S. T. (1991). Industrial and Engineering Chemistry Research, 30, 1335–1342.

    Article  CAS  Google Scholar 

  34. Romero, C. M., & Suárez, F. (2009). Journal of Solution Chemistry, 38, 315–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-2011-N) and by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Education, Science and Technology of Korea (2012053893).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngsoon Um or Byoung-In Sang.

Additional information

Kieun Choi and Byoung Seung Jeon contributed equally as first authors to this work.

Youngsoon Um and Byoung-In Sang contributed equally as corresponding authors to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K., Jeon, B.S., Kim, BC. et al. In Situ Biphasic Extractive Fermentation for Hexanoic Acid Production from Sucrose by Megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 171, 1094–1107 (2013). https://doi.org/10.1007/s12010-013-0310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0310-3

Keywords

Navigation