Skip to main content
Log in

Piper nigrum: Micropropagation, Antioxidative enzyme activities, and Chromatographic Fingerprint Analysis for Quality Control

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A reliable in vitro regeneration system for the economical and medicinally important Piper nigrum L. has been established. Callus and shoot regeneration was encouraged from leaf portions on Murashige and Skoog (MS) medium augmented with varied concentrations of plant growth regulators. A higher callus production (90 %) was observed in explants incubated on MS medium incorporated with 1.0 mg L−1 6-benzyladenine (BA) along with 0.5 mg L−1 gibberellic acid after 4 weeks of culture. Moreover, a callogenic response of 85 % was also recorded for 1.0 mg L−1 BA in combination with 0.25 mg L−1 α-naphthalene acetic acid (NAA) and 0.25 mg L−1 2,4-dichlorophenoxyacetic acid or 0.5 mg L−1 indole butyric acid (IBA) along with 0.25 mg L−1 NAA and indole acetic acid. Subsequent sub-culturing of callus after 4 weeks of culture onto MS medium supplemented with 1.5 mg L−1 thiodiazoran or 1.5 mg L−1 IBA induced 100 % shoot response. Rooted plantlets were achieved on medium containing varied concentrations of auxins. The antioxidative enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] revealed that significantly higher SOD was observed in regenerated plantlets than in other tissues. However, POD, CAT, and APX were higher in callus than in other tissues. A high-performance liquid chromatography (HPLC) fingerprint analysis protocol was established for quality control in different in vitro-regenerated tissues of P. nigrum L. During analysis, most of the common peaks represent the active principle “piperine.” The chemical contents, especially piperine, showed variation from callus culture to whole plantlet regeneration. Based on the deviation in chromatographic peaks, the in vitro-regenerated plantlets exhibit a nearly similar piperine profile to acclimated plantlets. The in vitro regeneration system and HPLC fingerprint analysis established here brought a novel approach to the quality control of in vitro plantlets, producing metabolites of interest with substantial applications for the conservation of germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TDZ:

Thiodiazoran

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

NAA:

α-Naphthalene acetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

IBA:

Indole butyric acid

IAA:

Indole acetic acid

MS0:

MS medium without plant growth regulators

PGRs:

Plant growth regulators

SOD:

Superoxide dismutase

POD:

Peroxidase

CAT:

Catalase

APX:

Ascorbate peroxidase

WHO:

World Health Organization

RSD:

Relative standard deviation

References

  1. Abbasi, B. H., Khan, N. A., Mahmood, T., Ahmad, M., Chaudhary, M. F., & Khan, M. A. (2010). Plant Cell, Tissue and Organ Culture, 101, 371–376.

    Article  CAS  Google Scholar 

  2. Ahmad, N., Fazal, H., Abbasi, B. H., Rashid, M., Mahmood, T., & Fatima, N. (2010). Plant Cell, Tissue and Organ Culture, 102, 129–134.

    Article  CAS  Google Scholar 

  3. Bhat, S. P., Chandel, K. P. S., & Malik, S. K. (1995). Plant Cell Report, 14, 398–402.

    Article  CAS  Google Scholar 

  4. Philip, V. J., Joseph, D., Triggs, G. S., & Dickinson, N. M. (1992). Plant Cell Report, 12, 41–44.

    Article  CAS  Google Scholar 

  5. Tripathi, A. K., Jain, D. C., & Kumar, S. (1996). Journal of Medicinal Aromatic Plant Sciences, 18, 302–321.

    CAS  Google Scholar 

  6. Srinivasan, K. (2007). Critical Reviews in Food and Nutrition, 47, 735–748.

    Article  CAS  Google Scholar 

  7. Santra-Mantra, D. K., Rao, V. S., Taware, S. P., & Tamhankar, S. A. (2005). Euphytica, 144, 215–221.

    Article  Google Scholar 

  8. Jayalekshmy, A., Menon, A. N., & Padmakumari, K. P. (2003). Journal of Essential Oil Research, 15, 155–157.

    Article  Google Scholar 

  9. Abbasi, B. H., Khan, M., Guo, B., Bokhari, S. A., & Khan, M. A. (2011). Plant Cell, Tissue Organ Culture, 105, 337–344.

    Article  CAS  Google Scholar 

  10. Nair, R. R., & Gupta, S. D. (2006). Plant Cell Report, 24, 699–707.

    Article  CAS  Google Scholar 

  11. Joseph, B., Joseph, D., & Philip, V. J. (1996). Plant Cell, Tissue Organ Culture, 47, 87–90.

    Article  Google Scholar 

  12. Ahmad, N., Fazal, H., Abbasi, B. H., & Iqbal, M. (2011). Asian Pacific Journal of Tropical Medicine, 4, 169–175.

    Article  Google Scholar 

  13. Abbasi, B. H., Saxena, P. K., Murch, S. J., & Liu, C.-Z. (2007). In Vitro Cellular & Developmental Biology—Plant, 43, 481–492.

    Article  CAS  Google Scholar 

  14. Vijayakumar, R. S., Surya, D., & Nalini, N. (2004). Redox Report, 9, 105–110.

    Article  CAS  Google Scholar 

  15. Khajuria, A., Thusu, N., Zutshi, U., & Bedi, K. L. (1998). Molecular and Cellular Biochemistry, 189, 113–118.

    Article  CAS  Google Scholar 

  16. Mittal, R., & Gupta, R. L. (2000). Experimental and Clinical Pharmacology, 22, 271–274.

    CAS  Google Scholar 

  17. Selven-diran, K., Singh, J. P., Krishnan, K. B., & Saktisekaran, D. (2003). Fitoterapia, 74, 109–115.

    Article  CAS  Google Scholar 

  18. Prasad, N. S., Raghavendra, R., Lokesh, B. R., & Naidu, K. A. (2004). Essential Fatty Acids, 70, 521–528.

    Article  CAS  Google Scholar 

  19. Liu, C.-Z., Gao, M., & Guo, B. (2008). Plant Cell Report, 27, 39–45.

    Article  Google Scholar 

  20. Abbasi, B. H., Ahmad, N., Fazal, H., & Mahmood, T. (2010). Journal of Medicinal Plants Research, 4, 7–12.

    CAS  Google Scholar 

  21. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–479.

    Article  CAS  Google Scholar 

  22. Meratan, A. A., Ghaffari, S. M., & Niknam, V. (2009). Biologia Plantarum, 53, 5–10.

    Article  CAS  Google Scholar 

  23. Giannopolitis, C. N., & Ries, S. K. (1977). Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  24. Arrigoni, O., De Gara, L., Tommasi, F., & Liso, R. (1992). Plant Physiology, 99, 235–238.

    Article  CAS  Google Scholar 

  25. Abeles, F. B., & Biles, C. L. (1991). Plant Physiology, 95, 269–273.

    Article  CAS  Google Scholar 

  26. Miyake, C., Shinzaki, Y., Nishioka, M., Horiguchi, S., & Tomizawa, K. I. (2006). Plant & Cell Physiology, 47, 200–210.

    Article  CAS  Google Scholar 

  27. Ahmad, N., Fazal, H., Zamir, R., Khalil, S. A., & Abbasi, B. H. (2011). Sugar Technology, 13, 174–177.

    Article  CAS  Google Scholar 

  28. Makunga, N. P., Jager, A. K., & Van-Staden, J. (2003). Plant Cell Report, 21, 967–973.

    Article  CAS  Google Scholar 

  29. Atak, C., & Celik, O. (2009). Pakistan Journal of Botany, 41, 1155–1161.

    CAS  Google Scholar 

  30. Eeswara, J. P., Allan, E. J., Mordue, J., & Stuchbury, T. (1999). Journal of the National Science Foundation of Sri Lanka, 27, 131–136.

    Google Scholar 

  31. Debnath, S. (2009). In Vitro Cellular & Developmental Biology—Plant, 45, 122–128.

    Article  Google Scholar 

  32. Madhusudhanan, K., & Rahiman, B. A. (2000). Biologia Plantarum, 43, 297–299.

    Article  Google Scholar 

  33. Jahan, A. A., & Anis, N. (2009). Acta Physiologiae Plantarum, 31, 133–138.

    Article  CAS  Google Scholar 

  34. Balaraju, K., Agastian, P., & Ignacimuthu, S. (2009). Acta Physiologiae Plantarum, 31, 487–494.

    Article  Google Scholar 

  35. Mohameed, M. A. H., & Ibrahim, T. (2011). Acta Physiologiae Plantarum, 33, 1945–1951.

    Google Scholar 

  36. Kelkar, S. M., Deboo, G. B., & Krishnamurthy, K. V. (1996). Plant Cell Report, 14, 398–402.

    Google Scholar 

  37. Franck, T., Kevers, C., & Gaspar, T. (1995). Plant Growth Regulation, 16, 253–256.

    Article  CAS  Google Scholar 

  38. Kumar, G. N. M., & Knowles, N. R. (1993). Plant Physiology, 102, 115–124.

    CAS  Google Scholar 

  39. Gupta, S. D., & Datta, S. (2003). Biologia Plantarum, 47, 179–183.

    Article  CAS  Google Scholar 

  40. Alsher, R. G., Erturk, N., & Heath, L. (2002). Journal of Experimental Botany, 53, 1331–1341.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of Higher Education Commission of Pakistan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Haider Abbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, N., Abbasi, B.H., Rahman, I.u. et al. Piper nigrum: Micropropagation, Antioxidative enzyme activities, and Chromatographic Fingerprint Analysis for Quality Control. Appl Biochem Biotechnol 169, 2004–2015 (2013). https://doi.org/10.1007/s12010-013-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0104-7

Keywords

Navigation