Skip to main content
Log in

Infrared Spectroscopy as Alternative to Wet Chemical Analysis to Characterize Eucalyptus globulus Pulps and Predict Their Ethanol Yield for a Simultaneous Saccharification and Fermentation Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioethanol can be obtained from wood by simultaneous enzymatic saccharification and fermentation step (SSF). However, for enzymatic process to be effective, a pretreatment is needed to break the wood structure and to remove lignin to expose the carbohydrates components. Evaluation of these processes requires characterization of the materials generated in the different stages. The traditional analytical methods of wood, pretreated materials (pulps), monosaccharides in the hydrolyzated pulps, and ethanol involve laborious and destructive methodologies. This, together with the high cost of enzymes and the possibility to obtain low ethanol yields from some pulps, makes it suitable to have rapid, nondestructive, less expensive, and quantitative methods to monitoring the processes to obtain ethanol from wood. In this work, infrared spectroscopy (IR) accompanied with multivariate analysis is used to characterize chemically organosolv pretreated Eucalyptus globulus pulps (glucans, lignin, and hemicellulosic sugars), as well as to predict the ethanol yield after a SSF process. Mid (4,000–400 cm−1) and near-infrared (12,500–4,000 cm−1) spectra of pulps were used in order to obtain calibration models through of partial least squares regression (PLS). The obtained multivariate models were validated by cross validation and by external validation. Mid-infrared (mid-IR)/NIR PLS models to quantify ethanol concentration were also compared with a mathematical approach to predict ethanol yield estimated from the chemical composition of the pulps determined by wet chemical methods (discrete chemical data). Results show the high ability of the infrared spectra in both regions, mid-IR and NIR, to calibrate and predict the ethanol yield and the chemical components of pulps, with low values of standard calibration and validation errors (root mean square error of calibration, root mean square error of validation (RMSEV), and root mean square error of prediction), high correlation between predicted and measured by the reference methods values (R 2 between 0.789 and 0.997), and adequate values of the ratio between the standard deviation of the reference methods and the standard errors of infrared PLS models relative performance determinant (RPD) (greater than 3 for majority of the models). Use of IR for ethanol quantification showed similar and even better results to the obtained with the discrete chemical data, especially in the case of mid-IR models, where ethanol concentration can be estimated with a RMSEV equal to 1.9 g L−1. These results could facilitate the analysis of high number of samples required in the evaluation and optimization of the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Araque, E., Parra, C., Freer, J., Contreras, D., Rodriguez, J., Mendonca, R., & Baeza, J. (2008). Enzyme and Microbial Technology, 43, 214–219.

    Article  CAS  Google Scholar 

  2. Wyman, C. E. (Ed.). (1996). Handbook on bioethanol. Boca Raton: CRC.

    Google Scholar 

  3. Lora, J. H., & Glasser, W. G. (2002). Journal of Polymers and the Environment, 10, 39–48.

    Article  CAS  Google Scholar 

  4. Lora, J. C. A., Wu, L. C. F and Goyal, G. (1991). Proceedings of the 6th International Symposium on Wood and Pulping Chemistry, 431–438

  5. Díaz, M. J., Alfaro, A., García, M. M., Eugenio, M. E., Ariza, J., & López, F. (2004). Industrial and Engineering Chemistry Research, 43, 1875–1881.

    Article  Google Scholar 

  6. Gilarrahz, M. A., Oliet, M., Rodriguez, F., & Tijero, J. (1998). Canadian Journal of Chemical Engineering, 76, 253–260.

    Article  Google Scholar 

  7. Jiménez, L., Pérez, I., García, J. C., López, F., & Ariza, J. (2004). Wood Science and Technology, 38, 127–137.

    Article  Google Scholar 

  8. Pan, X., Xie, D., Kang, K. Y., Yoon, S. L., & Saddler, J. N. (2007). Applied Biochemistry and Biotechnology, 137, 367–377.

    Article  Google Scholar 

  9. Sassner, P., Galbe, M., & Zacchi, G. (2006). Enzyme and Microbial Technology, 39, 756–762.

    Article  CAS  Google Scholar 

  10. Söderström, J., Pilcher, L., Galbe, M., & Zacchi, G. (2003). Biomass and Bioenergy, 24, 475–486.

    Article  Google Scholar 

  11. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  12. Zhu, J. Y., Pan, X. J., & Zalesny, R. S. (2010). Applied Microbiology and Biotechnology, 87, 847–857.

    Article  CAS  Google Scholar 

  13. Puls, J., Poutanen, K., Körner, H. U., & Viikari, L. (1985). Applied Microbiology and Biotechnology, 22, 416–423.

    Article  CAS  Google Scholar 

  14. National Renewable Energy Laboratory. (2008) Technical report NREL/TP-510-42630. USA.

  15. Gong, Y. M., & Zhang, W. (2008). Spectroscopy and Spectral Analysis, 28, 1544–1548.

    CAS  Google Scholar 

  16. Tsuchikawa, S. (2007). Applied Spectroscopy Reviews, 42, 43–71.

    Article  CAS  Google Scholar 

  17. Ye, X. P., Liu, L., Hayes, D., Womac, A., Hong, K. L., & Sokhansanj, S. (2008). Bioresource Technology, 99, 7323–7332.

    Article  Google Scholar 

  18. Liu, L., Ye, X. P., Womac, A. R., & Sokhansanj, S. (2010). Carbohydrate Polymers, 81, 820–829.

    Article  CAS  Google Scholar 

  19. Lindedam, J., Bruun, S., DeMartini, J., Rgensen, H., Felby, C., Yang, B., Wyman, C. E., & Magid, J. (2010). Journal Biobased Materials Bioenergy, 4, 378–383.

    Article  CAS  Google Scholar 

  20. Krongtaew, C., Messner, K., Ters, T., & Fackler, K. (2010). Bioresources, 5, 2063–2080.

    CAS  Google Scholar 

  21. Horikawa, Y., Takada, R., Watanabe, T., Takabe, K., Kobayashi, Y., & Sugiyama, J. (2011). Applied Biochemistry and Biotechnology, 164, 194–203.

    Article  CAS  Google Scholar 

  22. Shen Hou, L. L. (2010). Journal of Integrative Plant Biology, 53, 166–175.

    Google Scholar 

  23. Workman, J. J., & Weyer, L. (2007). Practical guide to interpretative near-infrared spectroscopy (p. 332). Boca Ratón: CRC.

    Google Scholar 

  24. Hein, P. R. G., Clair, B., Brancheriau, L., & Chaix, G. (2010). Journal of Near Infrared Spectroscopy, 18, 455–464.

    Article  CAS  Google Scholar 

  25. Hein, P. R. G., Brancheriau, L., Trugilho, P. F., Lima, J. T., & Chaix, G. (2010). Journal of Near Infrared Spectroscopy, 18, 443–454.

    Article  CAS  Google Scholar 

  26. El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Polymer Degradation and Stability, 94, 1632–1638.

    Article  CAS  Google Scholar 

  27. Li, M. F., Fan, Y. M., Xu, F., Sun, R. C., & Zhang, X. L. (2010). Industrial Crops and Products, 32, 551–559.

    Article  CAS  Google Scholar 

  28. Vazquez, G., Gonzalez, J., Freire, S., & Antorrena, G. (2002). Holz Als Roh-Und Werkstoff, 60, 25–30.

    Article  CAS  Google Scholar 

  29. Sjöström, E. (1993). Wood chemistry: fundamentals and applications (2nd ed.). USA: Academic.

    Google Scholar 

  30. Williams, P. C. (2001). Implementation of near-infrared technology. In P. N. K. Williams (Ed.), Near-infrared technology in the agricultural and food industries (2nd ed.). St. Paul Minnesota: American Association of Cereal Chemists, Inc.

    Google Scholar 

  31. Terdwongworakul, A., Punsuwan, V., Thanapase, W., & Tsuchikawa, S. (2005). Journal of Wood Science, 51, 167–171.

    Article  CAS  Google Scholar 

  32. Bruun, S., Jensen, J. W., Magid, J., Lindedam, J., & Engelsen, S. B. (2010). Industrial Crops and Products, 31, 321–326.

    Article  CAS  Google Scholar 

  33. Wang, K., Jiang, J. X., Xu, F., & Sun, R. C. (2009). Polymer Degradation and Stability, 94, 1379–1388.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the financial support by Fondecyt Postdoctoral 3100078 and Fondecyt 1110819 projects (Fondecyt, Chile). This is a contribution in memoriam to Prof. Dr. Jaime Baeza, who participated actively in the development of this work and was a great driving for the research about bioethanol in Chile and the region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario del P. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, R.d.P., Baeza, J., Rubilar, J. et al. Infrared Spectroscopy as Alternative to Wet Chemical Analysis to Characterize Eucalyptus globulus Pulps and Predict Their Ethanol Yield for a Simultaneous Saccharification and Fermentation Process. Appl Biochem Biotechnol 168, 2028–2042 (2012). https://doi.org/10.1007/s12010-012-9915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9915-1

Keywords

Navigation