Skip to main content
Log in

Effects of External Enzymes on the Fermentation of Soybean Hulls to Generate Lipids by Mortierella isabellina

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrolytic enzymes were evaluated on the lipid accumulation via an oleaginous fungal species, Mortierella isabellina, cultivated on sugars released from soybean hulls. The weight loss of soybean hull, fungal growth, and lipid production were tested under different loads of hydrolytic enzymes. M. isabellina could not directly utilize cellulose and adding cellulase and β-glucosidase significantly increased the cell growth and oil accumulation of M. isabellina on soybean hulls. The highest weight loss of soybean hulls was 47.80 % and the lipid production reached 0.14 g from 1 g of soybean hull when 12 U cellulase, 27.2 U β-glucosidase, 2,278.56 U pectinase, and 15 U hemicellulase were added. Fatty acids (76.82 %) accumulated in M. isabellina were C16 and C18, which are suitable for biodiesel production. These results provide a new application for soybean hulls to be applied as the raw material for the production of biodiesel fuel, besides its traditional role as animal feed supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LAW, P. (2007). Energy independence and security act of 2007.

  2. Zhang, J. G., & Hu, B. (2012). Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Applied Biochemistry and Biotechnology, 166(4), 1034–1046.

    Article  CAS  Google Scholar 

  3. Dey, P., Banerjee, J., & Maiti, M. K. (2011). Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresource Technology, 102(10), 5815–5823.

    Article  CAS  Google Scholar 

  4. Subramaniam, R., et al. (2010). Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology, 37(12), 1271–1287.

    Article  CAS  Google Scholar 

  5. Heredia-Arroyo, T., Wei, W., & Hu, B. (2010). Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology, 162(7), 1978–1995.

    Article  CAS  Google Scholar 

  6. Xia, C., et al. (2011). A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology for biofuels, 4(1), 15.

    Article  Google Scholar 

  7. Sharma, R. K., & Arora, D. S. (2010). Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 101(23), 9248–9253.

    Article  CAS  Google Scholar 

  8. Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25(1–2), 1–30.

    Article  CAS  Google Scholar 

  9. Meng, X., et al. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.

    Article  Google Scholar 

  10. Zhang, J. A., et al. (2010). Biodetoaxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnology For Biofuels, 3, 26.

    Article  Google Scholar 

  11. Masuda, T., & Goldsmith, P. D. (2009). World soybean production: area harvested, yield, and long-term projections. International Food and Agribusiness Management Review, 12(4), 143–161.

    Google Scholar 

  12. Mielenz, J. R., Bardsley, J. S., & Wyman, C. E. (2009). Fermentation of soybean hulls to ethanol while preserving protein value. Bioresource Technology, 100(14), 3532–3539.

    Article  CAS  Google Scholar 

  13. Yoo, J., et al. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590.

    Article  CAS  Google Scholar 

  14. Tuomela, M., Hatakka, M. V. A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72, 169–183.

    Article  CAS  Google Scholar 

  15. Kumar, P., et al. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  16. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  17. Kumar, D., & Murthy, G. S. (2011). Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for Biofuels, 4, 27.

    Article  CAS  Google Scholar 

  18. Suzuki, O., (1990). Recent trends of oleochemicals by biotechnology. World Conference on Oleochemicals, pp. 221–230.

  19. Meeuwse, P., Tramper, J., & Rinzema, A. (2011). Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess and Biosystems Engineering, 34, 939–949.

    Article  CAS  Google Scholar 

  20. Meeuwse, P., Tramper, J., & Rinzema, A. (2011). Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: validation of the chemostat model using yeast culture data from literature. Bioprocess and Biosystems Engineering, 34, 951–961.

    Article  CAS  Google Scholar 

  21. Roopesh, K., et al. (2006). Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology, 97(3), 506–511.

    Article  CAS  Google Scholar 

  22. Ho, N. W. Y., Chen, Z. D., & Brainard, A. P. (1998). Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64(5), 1852–1859.

    CAS  Google Scholar 

  23. Chatzifragkou, A., et al. (2010). Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. European Journal of Lipid Science and Technology, 112(9), 1048–1057.

    Article  CAS  Google Scholar 

  24. Papanikolaou, S., et al. (2007). Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109(11), 1060–1070.

    Article  CAS  Google Scholar 

  25. Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532–1553.

    Article  CAS  Google Scholar 

  26. Heredia-Arroyo, T., et al. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253.

    Article  CAS  Google Scholar 

  27. Ratledge, C. (2008). Microbial lipids. In H.-J. Rehm & G. Reed (Eds.), Biotechnology: products of secondary metabolism (pp. 133–197). Weinheim: Wiley.

    Google Scholar 

  28. Excoffier, G., Toussaint, B., & Vignon, M. R. (1991). Saccharification of steam-exploded poplar wood. Biotechnology and Bioengineering, 38(11), 1308–1317.

    Article  CAS  Google Scholar 

  29. Xin, Z., Yinbo, Q., & Peiji, G. (1993). Acceleration of ethanol-production from paper-mill waste fiber by supplementation with beta-glucosidase. Enzyme and Microbial Technology, 15(1), 62–65.

    Article  Google Scholar 

  30. Ghose, T. K., & Bisaria, V. S. (1979). Studies on the mechanism of enzymatic-hydrolysis of cellulosic substances. Biotechnology and Bioengineering, 21(1), 131–146.

    Article  CAS  Google Scholar 

  31. Beldman, G., et al. (1984). Application of cellulase and pectinase from fungal origin for the liquefaction and saccharification of biomass. Enzyme and Microbial Technology, 6(11), 503–507.

    Article  CAS  Google Scholar 

  32. Zhang, M. J., et al. (2010). Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Applied Biochemistry and Biotechnology, 160(5), 1407–1414.

    Article  CAS  Google Scholar 

  33. Ye Sun, J. C. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  Google Scholar 

  34. Liu, L., et al. (2009). Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl(3) pretreatment. Bioresource Technology, 100(23), 5853–5858.

    Article  CAS  Google Scholar 

  35. Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2(7), 759–766.

    Article  CAS  Google Scholar 

  36. Pinzi, S., Garcia, I. L., Lopez-Gimenez, F. J., de Castro, M. D. L., Dorado, G., & Dorado, M. P. (2009). The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy & Fuels, 23, 2325–2341.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Jianguo Zhang's research was supported by Dr. Bo Hu's faculty seed money program at University of Minnesota. Part of the work was also supported by Grant-in-Aid program at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Hu, B. Effects of External Enzymes on the Fermentation of Soybean Hulls to Generate Lipids by Mortierella isabellina . Appl Biochem Biotechnol 168, 1896–1906 (2012). https://doi.org/10.1007/s12010-012-9905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9905-3

Keywords

Navigation