Skip to main content
Log in

Animal Bone Char Solubilization with Itaconic Acid Produced by Free and Immobilized Aspergillus terreus Grown on Glycerol-Based Medium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L−1) and itaconic acid production (26.9 g L−1) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5–0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g L−1 proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg L–1 soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heckrath, G., Brookes, P. C., Poulton, P. R., & Goulding, K. W. T. (1995). Journal of Environmental Quality, 24, 904–910.

    Article  CAS  Google Scholar 

  2. Stockdale, E. A., Shepard, M. A., Fortune, S., & Cuttle, S. P. (2002). Soil Use and Management, 18, 301–308.

    Article  Google Scholar 

  3. Cordell, D., Drangert, J. O., & White, S. (2009). Global Environmental Change, 19, 292–305.

    Article  Google Scholar 

  4. Eichler-Löbermann, B., Köhne, S., & Köppen, D. (2007). Journal of Plant Nutrition and Soil Science, 170, 623–628.

    Article  Google Scholar 

  5. Schiemenz, K., & Eichler-Löbermann, B. (2010). Nutrient Cycling in Agroecosystems, 87, 471–482.

    Article  Google Scholar 

  6. Elferink, E. (2009) Meat, milk and eggs: analysis of animal food environment relations. PhD Thesis, University Groningen.

  7. Warren, G. P., Robinson, J. S., & Someus, E. (2009). Nutrient Cycling in Agroecosystems, 84, 167–178.

    Article  Google Scholar 

  8. Deydier, E., Guilet, R., Sarda, S., & Sharrock, P. (2005). Journal of Hazardous Materials, B121, 141–148.

    Article  Google Scholar 

  9. Conesa, J. A., Fullana, A., & Font, R. (2003). Journal of Analytical and Applied Pyrolysis, 70, 619–630.

    Article  CAS  Google Scholar 

  10. Vassilev, N., Reyes, A., Altmajer, D., Serrano, M., Sanchez, D. & Vassileva, M. (2010) In: Conference Proceedings of the 10th International Multidisciplinary Scientific Geo-Conference, STEF92 Technology Ltd., Sofia, vol. 2, pp. 521–528.

  11. Fenice, M., Selbman, L., Federici, F., & Vassilev, N. (2000). Bioresource Technology, 73, 157–162.

    Article  CAS  Google Scholar 

  12. Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (1998). Journal of Biotechnology, 63, 67–72.

    Article  CAS  Google Scholar 

  13. Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (2000). Process Biochemistry, 35, 693–697.

    Article  CAS  Google Scholar 

  14. Vassilev, N., Vassileva, M., Azcon, R., Fenice, M., Federici, F., & Barea, J. M. (1998). Bioresource Technology, 66, 133–137.

    Article  CAS  Google Scholar 

  15. Vassilev, N., Vassileva, M., Azcon, R., & Medina, A. (2001). Journal of Biotechnology, 91, 237–242.

    Article  CAS  Google Scholar 

  16. Khan, R., Shahzad, S., Choudhary, M., Khan, S. A., & Ahmad, A. (2010). Pakistan Journal of Botany, 42, 1281–1287.

    Google Scholar 

  17. Melo, I. S., Faull, J. L., & Nascimento, R. S. (2006). Brazilian Journal of Microbiology, 37, 417–419.

    Article  Google Scholar 

  18. Wolfson, A., Litvak, G., Dlugy, C., Shortland, Y., & Tavor, D. (2009). Industrial Crops and Products, 30, 78–81.

    Article  CAS  Google Scholar 

  19. Kautola, H., Vassilev, N., & Linko, Y. Y. (1990). Journal of Biotechnology, 13, 315–323.

    Article  CAS  Google Scholar 

  20. Vassilev, N., Kautola, H., & Linko, Y. Y. (1992). Biotechnology Letters, 14, 201–206.

    Article  Google Scholar 

  21. Hartford, C. G. (1962). Analytical Chemistry, 34, 426–428.

    Article  CAS  Google Scholar 

  22. Milson, P. E., & Meers, J. L. (1985). In H. W. Blanch, S. Drew, & D. I. Wang (Eds.), Comprehensive biotechnology (Vol. 3, pp. 681–700). Oxford: Pergamon.

    Google Scholar 

  23. Hammond, L. L., Chien, S. H., Mokwunye, A. U., & Brady, N. C. (1986). Advance in Agronomy, 40, 89–140.

    Article  CAS  Google Scholar 

  24. Xiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., & Wang, D.-Z. (2008). Ecological Engineering, 33, 187–193.

    Article  CAS  Google Scholar 

  25. Riscaldati, E., Moresi, M., Federici, F., & Petruccioli, M. (2000). Journal of Biotechnology, 83, 219–230.

    Article  CAS  Google Scholar 

  26. Cunningahm, J. E., & Kuiack, C. (1992). Applied and Environmental Microbiology, 58, 1451–1458.

    Google Scholar 

  27. Nahas, E. (1996). World Journal of Microbiology and Biotechnology, 12, 567–572.

    Article  CAS  Google Scholar 

  28. Petruccioli, M., & Angiani, E. (1995). Annali di Microbiologia ed Enzimologia, 45, 119–128.

    CAS  Google Scholar 

  29. Vassilev, N. & Vassileva, M. (1990). In J. A. M. de Bont, J. Visser, B. Mattiasson, & J. Tramper (Eds.), Physiology of immobilized cells (pp. 331–334). Elsevier.

Download references

Acknowledgments

This work was supported by Projects CTM2008-03524, CTM2011-027797 (Ministerio de Ciencia e Innovación, España), P09-RNM-5196 (Project from the Junta de Andalucía, Proyecto de Excelencia), and EU COST FA0905 and FA1103. NV is grateful for the SABF PR2010-0422—Ministerio de Educacion, España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Vassilev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilev, N., Medina, A., Eichler-Löbermann, B. et al. Animal Bone Char Solubilization with Itaconic Acid Produced by Free and Immobilized Aspergillus terreus Grown on Glycerol-Based Medium. Appl Biochem Biotechnol 168, 1311–1318 (2012). https://doi.org/10.1007/s12010-012-9859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9859-5

Keywords

Navigation