Skip to main content
Log in

Degradation of Alkylphenols by White Rot Fungus Irpex lacteus and Its Manganese Peroxidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alkylphenols are common endocrine disrupters that are produced from the degradation of widely used surfactants. Since they cause various harmful effects on aquatic life and in humans, they should be removed from the environments being contaminated. White rot fungus Irpex lacteus can completely degrade 100 mg/L of octylphenol, nonylphenol, and phenylphenol during 1 day of incubation in the complex YMG medium, which was the highest degrading capability among nine strains of white rot fungi tested. In the N-limited Kirk’s basal salts medium, I. lacteus could degrade almost 100 % of 100 mg/L octylphenol and nonylphenol in 1 h, and exhibited a high activity of manganese peroxidase (MnP; 1,790 U/L). MnP of I. lacteus was purified by ion exchange chromatography, and this degraded 99 % of 50 mg/L octylphenol and removed 80 % of estrogenic activity in 2 hours. In addition, the purified MnP (10 U/mL) degraded over 90 % of 50 mg/L nonylphenol in 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baborová, P., Möder, M., Baldrian, P., Cajthamlová, & Cajthaml, T. (2006). Research in Microbiology, 157, 248–253.

    Article  Google Scholar 

  2. Cabana, H., Jiwan, J.-L., Rosenberg, R., Elisashvili, V., Penninckx, M., Agathos, S., et al. (2007). Chemosphere, 67, 770–778.

    Article  CAS  Google Scholar 

  3. Cajthaml, T., Křesinová, Z., Svobodová, K., & Möder, M. (2009). Chemosphere, 75, 745–750.

    Article  CAS  Google Scholar 

  4. Farnet, A., Chevremont, A., Gil, G., Gastaldi, S., & Ferre, E. (2011). Chemosphere, 82, 284–289.

    Article  CAS  Google Scholar 

  5. Frederic, H., Sheng, D., & Gold, M. (1996). Biochimica et Biophysica Acta, 1297, 139–148.

    Article  Google Scholar 

  6. Gabriel, F., Giger, W., Guenther, K., & Kohler, H.-P. (2005). Applied and Environmental Microbiology, 71, 1123–1129.

    Article  CAS  Google Scholar 

  7. Junghanns, C., Moeder, M., Krauss, G., Martin, C., & Schlosser, D. (2005). Microbiology, 151, 45–57.

    Article  CAS  Google Scholar 

  8. Kim, H.-Y., & Song, H.-G. (2003). Applied Microbiology and Biotechnology, 61, 150–156.

    CAS  Google Scholar 

  9. Limongi, P., Kjalke, M., Vind, J., Tams, J., Johansson, T., & Welinder, K. (1995). European Journal of Biochemistry, 227, 270–276.

    Article  CAS  Google Scholar 

  10. Mielgo, I., Palma, C., Guisan, J., Lafuente, R., Moreira, M., Feijoo, G., et al. (2003). Enzyme and Microbial Technology, 32, 769–775.

    Article  CAS  Google Scholar 

  11. Nishikawa, J., Saito, K., Goto, J., Dakeyama, F., Matsuo, M., & Nishihara, T. (1999). Toxicology and Applied Pharmacology, 154, 76–83.

    Article  CAS  Google Scholar 

  12. Saito, T., Kato, K., Yokogawa, Y., Nishida, M., & Yamashita, N. (2004). Journal of Bioscience and Bioenginnering, 98, 64–66.

    CAS  Google Scholar 

  13. Sklenar, J., Niku-Paavola, M., Santos, S., Man, P., Kruus, K., & Novotny, C. (2010). Enzyme and Microbial Technology, 46, 550–556.

    Article  CAS  Google Scholar 

  14. Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. (2008). Environmental International, 34, 1033–1049.

    Article  CAS  Google Scholar 

  15. Soares, A., Jonasson, K., Terrazas, E., Guieysse, B., & Mattiasson, B. (2005). Applied Microbiology and Biotechnology, 66, 719–725.

    Article  CAS  Google Scholar 

  16. Takeo, M., Prabu, S., Kitamura, C., Hirai, M., Takahashi, H., Kato, D., et al. (2006). Journal of Bioscience and Bioengineering, 102, 352–361.

    Article  CAS  Google Scholar 

  17. Tanaka, T., Nose, M., Endo, A., Fujii, T., & Taniguchi, M. (2003). Journal of Bioscience and Bioengineering, 96, 541–546.

    Article  CAS  Google Scholar 

  18. Tanghe, T., Dhooge, W., & Verstraete, W. (2000). Biodegradation, 11, 11–19.

    Article  CAS  Google Scholar 

  19. Tien, M., & Kirk, T. (1988). Methods in Enzymology, 161, 238–249.

    Article  CAS  Google Scholar 

  20. Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., & Watanabe, T. (2006). Journal of Biotechnology, 126, 431–439.

    Article  CAS  Google Scholar 

  21. Tsutsumi, Y., Haneda, T., & Nishida, T. (2001). Chemosphere, 42, 271–276.

    Article  CAS  Google Scholar 

  22. Vincent, M., & Sneddon, J. (2009). Microchemical Journal, 92, 112–118.

    Article  CAS  Google Scholar 

  23. Wang, Y., Rafael, V., & Michael, A. (2002). Current Microbiology, 45, 77–87.

    Article  CAS  Google Scholar 

  24. Xiaobin, X., Rong, J., Pingsheng, L., Shiqian, T., Qin, Z., Wenzhong, T., et al. (2007). Enzyme and Microbial Technology, 41, 258–264.

    Article  Google Scholar 

  25. Yeo, S., Park, N., Song, H.-G., & Choi, H. (2007). Journal of Microbiology, 45, 213–218.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Ministry of Environment as “The Eco-Technopia 21 Project” (grant no. 031-071-030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, DS., Song, HG. Degradation of Alkylphenols by White Rot Fungus Irpex lacteus and Its Manganese Peroxidase. Appl Biochem Biotechnol 168, 542–549 (2012). https://doi.org/10.1007/s12010-012-9795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9795-4

Keywords

Navigation