Skip to main content
Log in

The Impact of Long-Term In Vitro Expansion on the Senescence-Associated Markers of Human Adipose-Derived Stem Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human adipose-derived stem cells (ASCs) have generated a great deal of excitement in regenerative medicine. However, their safety and efficacy issue remain a major concern especially after long-term in vitro expansion. The aim of this study was to investigate the fundamental changes of ASCs in long-term culture by studying the morphological feature, growth kinetic, surface marker expressions, expression level of the senescence-associated genes, cell cycle distribution and ß-galactosidase activity. Human ASCs were harvested from lipoaspirate obtained from 6 patients. All the parameters mentioned above were measured at P5, P10, P15 and P20. Data were subjected to one-way analysis of variance with a Tukey post hoc test to determine significance difference (P < 0.05). The data showed that growth of ASCs reduced in long-term culture and the ß-galactosidase activity was significantly increased at later passage (P20). The morphology of ASCs in long-term culture showed the manifestation of senescent feature at P15 and P20. Significant alteration in the senescence-associated genes expression levels was observed in MMP1, p21, Rb and Cyclin D1 at P15 and P20. Significant increase in CD45 and HLA DR DQ DP surface marker was observed at P20. While cell cycle analysis showed significant decrease in percentage of ASCs at S and G2/M phase at later passage (P15). Our data showed ASCs cultured beyond P10 favours the senescence pathway and its clinical usage in cell-based therapy may be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASCs:

Human adipose-derived stem cells

MSCs:

Mesenchymal stem cells

CD:

Cluster differentiation

MMP1:

Matrix metalloproteinase 1

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HLA:

Human leukocyte antigen

MHC:

Major histocompatibility complex

IL6:

Interleukin 6

TERT:

Telomerase reverse transcriptase

Rb:

Retinoblastoma

References

  1. De Vries, R. B. M., Oerlemans, A., Trommelmans, L., Diericks, K., & Gordijn, B. (2008). Tissue. Engineering Part B, 14(4), 1–9.

    Google Scholar 

  2. D’Andrea, F., De Francesco, F., Ferraro, G. A., Desiderio, V., Tirino, V., De Rosa, A., et al. (2008). Tissue Engineering Part C, 14(3), 233–239.

    Article  Google Scholar 

  3. Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., et al. (2005). British Journal of Haematology, 129, 118–129.

    Article  Google Scholar 

  4. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Mizuno, H., Alfonso, Z. C., et al. (2002). Molecular Biology of the Cell, 13, 4279–4295.

    Article  CAS  Google Scholar 

  5. Boquest, A. C., Shahdadfar, A., Fronsdal, K., Sigurjonsson, O., Tunheim, S. H., Collas, P., et al. (2005). Molecular Biology of the Cell, 16, 1131–1141.

    Article  CAS  Google Scholar 

  6. Alhadlaq, A., Tang, M., & Mao, J. J. (2005). Tissue. Engineering, 11(3/4), 556–566.

    CAS  Google Scholar 

  7. Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., & Harii, K. (2008). Aesthetic Plastic Surgery, 32, 48–55.

    Article  Google Scholar 

  8. Si, Y. L., Zhao, Y. L., Hao, H. J., Fu, X. B., & Dan, W. D. (2010). Ageing Research, 10(1), 93–103.

    Google Scholar 

  9. Itahana, K., Dimri, G., & Campisi, J. (2001). European Journal of Biochemistry, 268, 2784–2791.

    Article  CAS  Google Scholar 

  10. Bringold, F., & Serrano, M. (2000). Experimental Gerontology, 35, 317–329.

    Article  CAS  Google Scholar 

  11. Tam, W. L., Ang, Y. S., & Lim, B. (2007). Mechanisms of Ageing and Development, 128, 137–148.

    Article  CAS  Google Scholar 

  12. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., et al. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92, 9363–9367.

    Article  CAS  Google Scholar 

  13. Caplan, A. I. (2007). Cellular Physiology, 213, 341–347.

    Article  CAS  Google Scholar 

  14. Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Cancer Research, 65(8), 3035–3039.

    CAS  Google Scholar 

  15. Serakinci, N., Guldberg, P., Burns, J. S., Abdallah, B., Schrodder, H., Jensen, T., et al. (2004). Oncogene, 23, 5095–5098.

    Article  CAS  Google Scholar 

  16. Bonab, M. M., Alimoghaddam, K., Telebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). BMC Cell Biology, 7(14), 1471–1478.

    Google Scholar 

  17. Bernardo, M. E., Zaffaroni, N., Novara, F., Cometa, A. M., Avanzini, M. A., Moretta, A., et al. (2007). Cancer Research, 67, 9142–9149.

    Article  CAS  Google Scholar 

  18. Rajaraman, R., Guernsey, D. L., Rajaraman, M. M., Rajaraman, S. R. (2006). Cancer Cell International, 25(6). http://www.cancerci.com/content/6/1/25.

  19. Poulalhon, N., Farge, D., Roos, N., Tacheau, C., Neuzillet, C., Michel, L., et al. (2006). Journal of Biological Chemistry, 281(44), 33045–33052.

    Article  CAS  Google Scholar 

  20. Izadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J., et al. (2008). Cancer Research, 68(11), 4229–4238.

    Article  CAS  Google Scholar 

  21. Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Journal of Cellular Biochemistry, 99, 1285–1297.

    Article  CAS  Google Scholar 

  22. Wan Safwani, W. K. Z., Makpol, S., Sathapan, S., & Chua, K. H. (2011). Biotechnol. Applied Biochemistry, 58(4), 263–270.

    Google Scholar 

  23. Vu, T. H., & Werb, Z. (2000). Genes & Development, 14, 2123–2133.

    Article  CAS  Google Scholar 

  24. Debelle, L., & Tamburro, A. M. (1999). The International Journal of Biochemistry & Cell Biology, 31, 261–272.

    Article  CAS  Google Scholar 

  25. Rao, K. M., & Cohen, H. J. (1991). Mutation Research, 256(2–6), 139–148.

    CAS  Google Scholar 

  26. Chen, J. H., Hales, C. N., & Ozanne, S. E. (2007). Nucleic Acid Research, 35(22), 7417–7428.

    Article  CAS  Google Scholar 

  27. Fu, M., Wang, C., Li, Z., Sakamaki, T., & Pestell, R. G. (2004). Endocrinology, 145(12), 5439–5447.

    Article  CAS  Google Scholar 

  28. Blagosklonny, M. V., & Pardee, A. B. (2002). Cell Cycle, 1(2), 103–110.

    CAS  Google Scholar 

  29. Wei, W., Herbig, U., Wei, S., Dutriaux, A., & Sedivy, J. M. (2003). EMBO, 4, 1061–1066.

    Article  CAS  Google Scholar 

  30. Siegert, J. L., Rushton, J. J., Sellers, W. R., Kaelin, W. G., Jr., & Robbins, P. D. (2000). Oncogene, 19, 5703–5711.

    Article  CAS  Google Scholar 

  31. Fang, Li, Igarashi, M., Leung, J., Sugrue, M. M., Lee, S. W., & Aaronson, S. A. (1999). Oncogene, 18, 2789–2797.

    Article  CAS  Google Scholar 

  32. Chen, Q. M., Barthlomew, J. C., Campisi, J., Acosta, M., Reagan, J. D., & Ames, B. N. (1998). Biochemical Journal, 332, 43–50.

    CAS  Google Scholar 

  33. Gartel, A. L., & Tyner, A. L. (2002). Molecular Cancer Therapeutics, 1, 639–649.

    CAS  Google Scholar 

  34. Atadja, P., Wong, H., Garkavtsev, I., Veillette, C., & Riabowol, K. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92, 8348–8352.

    Article  CAS  Google Scholar 

  35. Liebermann, D. A., & Hoffman, B. (2008). Journal of Molecular Signaling, 3(15). www.jmolecularsignaling.com/content/3/1/15.

  36. Myung, K., Datta, A., & Kolodner, R. D. (2001). Cell, 104, 397–408.

    Article  CAS  Google Scholar 

  37. Pearce, D., & Bonnet, D. (2009). Mechanism of Ageing and Development, 130, 54–57.

    Article  CAS  Google Scholar 

  38. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., et al. (1998). Science, 279(5349), 349–352.

    Article  CAS  Google Scholar 

  39. Han, J., Liu, J. Y., Swartz, D. D., & Andreadis, S. T. (2010). Cardiovascular Research, 87, 147–155.

    Article  CAS  Google Scholar 

  40. Handorf, A. M., & Li, W. J. (2011). PLoS One, 6(7), e22887. doi:10.1371/journal.pone.0022887.

    Article  CAS  Google Scholar 

  41. Katsara, O., Mahaira, L. G., IIiopoulou, E. G., Moustaki, A., Antsaklis, A., Loutradis, D., et al. (2011). Stem Cells and Development, 20(9), 1549–1561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Science, Technology and Innovation (MOSTI; Grant No. 02-01-02 SF0290) and Ministry of Higher Education Malaysia (MOHE; Grant No. UKM-FF-03-FRGS0004-2009). Special thanks to Ms. Nurhazira Abdul Rahim and Ms. Azalina Zainuddin for providing the gene primers and the staff of the Biochemistry Department for their technical assistance.

Competing Interests

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kien Hui Chua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safwani, W.K.Z.W., Makpol, S., Sathapan, S. et al. The Impact of Long-Term In Vitro Expansion on the Senescence-Associated Markers of Human Adipose-Derived Stem Cells. Appl Biochem Biotechnol 166, 2101–2113 (2012). https://doi.org/10.1007/s12010-012-9637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9637-4

Keywords

Navigation