Skip to main content
Log in

Use of Different Extracts of Coffee Pulp for the Production of Bioethanol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Coffee is one of the most important agricultural products in Brazil. More than 50 % of the coffee fruit is not used for the production of commercial green coffee and is therefore discarded, usually ending up in the environment. The goal of this work was to select an efficient process for obtaining coffee pulp extract and to evaluate the use of this extract in bioethanol production. The effects of heat treatment and trituration on the yield and composition of the extract were investigated by measuring the amounts of reducing sugars, starch, pectin, and phenolic compounds. The extraction process was most efficient at room temperature using grinding followed by pressing. Five different fermentation media were tested: sugarcane juice or molasses diluted with water or with coffee pulp extract and a medium with only coffee pulp extract. Batch fermentations were carried out at 30 °C for 24 h, and samples were taken to obtain measurements of the total reducing sugars, cell count, and ethanol concentration. The addition of coffee pulp extract did not influence the fermentation or yeast viability, and it can thus be mixed with sugarcane juice or molasses for the production of bioethanol, with a yield of approximately 70 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IBGE. Indicadores IBGE Estatística da Produção Agrícola 2012. Available from: www.ibge.gov.br>. Accessed march 21, 2012.

  2. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biochemical Engineering Journal, 6, 153–162.

    Article  CAS  Google Scholar 

  3. Ulloa Rojas, J. B., Verreth, J. A. J., Van Weerd, J. H., & Huisman, E. A. (2002). Anim Feed Sci Tech, 99, 195–204.

    Article  CAS  Google Scholar 

  4. Bártholo, G. F., Magalhães, A. A. R., Guimarães, P. T. G., & Chalfoun, S. M. (1989). Informe Agropecuário, 14, 33–44.

    Google Scholar 

  5. Esquivel, P., & Jiménez, V. M. (2012). Food Research International, 46, 488–495.

    Article  CAS  Google Scholar 

  6. Vilela, D. M., Pereira, G. V. M., Silva, C. F., Batista, L. R., & SCHWAN, R. F. (2010). Food Microbiology, 27, 1128–1135.

    Article  CAS  Google Scholar 

  7. Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008). Food Microbiology, 25, 951–957.

    Article  CAS  Google Scholar 

  8. Ulloa Rojas, J. B., Verreth, J. A. J., Amato, S., & Huisman, E. A. (2003). Bioresource Technol, 89, 267–274.

    Article  CAS  Google Scholar 

  9. Brand, D., Pandey, A., Rodrigues-Leon, J. A., Roussos, S., Brand, I., & Soccol, C. R. (2001). Biotechnol. Progr, 17, 1065–1070.

    Article  CAS  Google Scholar 

  10. Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry (4th ed.). Heidelberg: Springer. Chapter 21.

    Google Scholar 

  11. Brand, D., Pandey, A., Roussos, S., & Soccol, C. R. (2000). Enzyme and Microbial Technology, 27, 127–133.

    Article  CAS  Google Scholar 

  12. Orozco, A. L., Perez, M. I., Guevara, O., Hernandez, M., Gonzaçes-Villa, F., Polvillo, O., & Arias, M. E. (2008). J. Anal. Appl. Pyrol., 81, 247–252.

    Article  CAS  Google Scholar 

  13. Amorim, H. V., Lopes, M. L., Oliveira, J. V. C., Buckeridge, M. S., & Godman, G. H. (2011). Appl. Microbiol. Biot., 91, 1267–1275.

    Article  CAS  Google Scholar 

  14. Wheals, A. E., Basso, L. C., Alves, D. M. G., & Amorim, H. V. (1999). Trends in Biotechnology, 17, 482–487.

    Article  CAS  Google Scholar 

  15. Silva, C. L. C., Rosa, C. A., & Oliveira, E. S. (2006). World JMicrob. Biot., 22, 857–863.

    Article  CAS  Google Scholar 

  16. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Appl. Microbiol. Biot., 66, 10–26.

    Article  CAS  Google Scholar 

  17. Heipieper, H. J., Weber, F. J., Sikkema, J., Kewelo, H., & Bont, J. A. M. (1994). Trends in Biotechnology, 12, 409–415.

    Article  CAS  Google Scholar 

  18. Palmqvist, E., Meinander, Q., Grage, H., & Hahn-Hagerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.

    Article  CAS  Google Scholar 

  19. Almeida, J. R. M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). J. Chem. Tech. Biotechnol., 82, 340–349.

    Article  CAS  Google Scholar 

  20. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., & Jonsson, L. J. (2000). Appl. Microbiol. Biot., 84–86, 617–632.

    Google Scholar 

  21. Nelson, N. A. (1944). Fotometric adaptation of Somogyi method for the determination of glucose. J.Biol.Chen, 153, 375–380.

    CAS  Google Scholar 

  22. McCready, R. M., & McComb, E. A. (1952). Analytical Chemistry, 24, 1586–1588.

    Article  Google Scholar 

  23. Bitter, T., & Muir, H. M. A. (1962). Analytical Biochemistry, 34, 330–334.

    Article  Google Scholar 

  24. Goldstein, J. L. and Swain, T. Phytochemistry, 2, 371–383

  25. Association of Official Agricultural Chemists. (1992). 12nd ed., A.O.A.C., Washington, NJ.

  26. Basso, L. C., Amorin, H. V., Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.

    Article  CAS  Google Scholar 

  27. Lee, S. S., Robinson, F. M., & Wang, H. Y. (1981). Biotechnology and Bioengineering, 11, 641–649.

    Google Scholar 

  28. Andrietta, S. R., Andrietta, M. G. S., & Rodrigues, M. I. (1995). Stab., 13, 22–25.

    Google Scholar 

  29. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  30. Statistica (Data Analysis Software System) (2008) 8.0. Stat-Soft, Inc., USA (www.statsoft.com)

  31. Elias, L.G. (1978), Pulpa de café: composición, tecnologia y utilizació, vol.1: Incap, Panamá, pp. 19–29.

  32. Ramirez-Coronel, M. A., Marnet, N., Kolli, V. S. K., Roussos, S., Guyot, S., & Augur, C. (2004). Journal of Agricultural and Food Chemistry, 52, 1344–1349.

    Article  CAS  Google Scholar 

  33. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technol, 74, 25–33.

    Article  CAS  Google Scholar 

  34. Schwan, R. F., Mendonca, A. T., Silva, J. J., Rodrigues, V., & Whels, E. A. (2001). Anton. Leeuw. Int. J. G., 79, 89–96.

    Article  CAS  Google Scholar 

  35. Dorta, C. C., Oliva-Neto, P., Abreu-Neto, M. S., Nicolau-Junior, N., & Nicolau, A. I. (2006). World JMicrob. Biot., 22, 177–182.

    Article  CAS  Google Scholar 

  36. Lima, U. A., Aquarone, E., Borzani, W., & Schmidell, W. (2001). Biotecnologia Industrial. São Paulo: Edgard Blucher, 3, 593.

    Google Scholar 

  37. Arshad, M., Khan, Z. M., Rehman, K., Shah, F. A., & Rajoka, M. I. (2008). Letters in Applied Microbiology, 47, 410–414.

    Article  CAS  Google Scholar 

  38. Narendranath, N. V., & Power, R. (2005). Applied Environ Microbio., 71, 2239–2243.

    Article  CAS  Google Scholar 

  39. Ortiz-Muniz, B., Carvajal-Zarrabal, O., Sanchaez, B. T., & Aguialar-Uscanga, M. G. (2010). J Chem Technol Biot, 85 n. 10, 1361–1367. Oct 2010.

    Google Scholar 

  40. Gouvea, B. M., Torres, C., Franca, A. S., Oliveira, L. S., & Oliveira, E. S. (2009). Biotechnology Letters, 31, 1315–1319.

    Article  CAS  Google Scholar 

  41. Laluce, C., Tognolli, J. O., De Oliviera, K. F., Souza, C. S., & Morais, M. R. (2009). Appl. Microbiol. Biot, 83, 627–637.

    Article  CAS  Google Scholar 

  42. Andrietta, S. R., Migliari, P. C., & Andrietta, M. G. S. (1999). Stab, 7, 54–59.

    Google Scholar 

  43. Marini, M. M., Gomes, F. C. O., Silva, C. L. C., Cadete, R. M., Badotti, F., Cardoso, C. R., & Rosa, C. A. (2009). World J. Microb. Biot, 25, 235–242.

    Article  CAS  Google Scholar 

  44. Oliveira, E. S., Rosa, C. A., Morgano, M. A., & Serra, G. E. (2004). World J Microb. Biot., 20, 19–24.

    Article  CAS  Google Scholar 

  45. Liang, L., Zhang, Y., Zhang, L., Zhu, M., Liang, S., & Huang, Y. (2008). J. Ind Microbiol. Biot, 35, 1605–1613.

    Article  CAS  Google Scholar 

  46. Stroppa, C. T., Alves, J. G. L. F., Figueiredo, A. L. F., & Castro, C. C. (2009). Ciênc. e Agrotec., 33, 1978–1983.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq for granting the E.G.T.M. scholarship, to the Embrapa-Coffee covenant, and to UFLA for financial support of the project. The authors thank the Department of Biology and, in particular, Dr. Rosane Freitas Schwan, for providing the yeast, and the Lusiania alcohol factory for kindly providing the molasses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro Galvão Tavares Menezes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, E.G.T., do Carmo, J.R., Menezes, A.G.T. et al. Use of Different Extracts of Coffee Pulp for the Production of Bioethanol. Appl Biochem Biotechnol 169, 673–687 (2013). https://doi.org/10.1007/s12010-012-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0030-0

Keywords

Navigation