Skip to main content
Log in

Characterization of a Thermostable Family 1 Glycosyl Hydrolase Enzyme from Putranjiva roxburghii Seeds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coutinho, P. M,. & Henrissat, B. (1998) CAZY: Carbohydrate active enzymes server at URL: http://www.cazy.org/ accessed (October 20, 2011).

  2. Beguin, P. (1990). Annual Review of Microbiology, 44, 219–248.

    Article  CAS  Google Scholar 

  3. Berrin, J. G., Czjzek, M., Kroon, P. A., Mclauchlan, W. R., Puigserver, A., Williamson, G., et al. (2003). Biochemical Journal, 373, 41–48.

    Article  CAS  Google Scholar 

  4. Naim, H. Y. (2001). Histology and Histopathology, 16, 553–561.

    CAS  Google Scholar 

  5. Schiffmann, R., & Brady, R. O. (2002). Drugs, 62, 733–742.

    Article  CAS  Google Scholar 

  6. Leah, R., Kigel, J., Svendsen, I., & Mundy, J. (1995). Journal of Biological Chemistry, 270, 15789–15797.

    Article  CAS  Google Scholar 

  7. Smith, D. L., Starrett, D. A., & Gross, K. C. (1998). Plant Physiology, 117, 417–423.

    Article  CAS  Google Scholar 

  8. Dharmawardhana, D. P., Ellis, B. E., & Carlson, J. E. (1995). Plant Physiology, 107, 331–339.

    Article  CAS  Google Scholar 

  9. Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., Campos, N., Schell, J., et al. (1993). Science, 262, 1051–1054.

    Article  CAS  Google Scholar 

  10. Morant, A. V., Jorgensen, K., Jorgensen, C., Paquette, S. M., Sanchez-Perez, R., Moller, B. L., et al. (2008). Phytochemistry, 69, 1795–1813.

    Article  CAS  Google Scholar 

  11. Poulton, J. E. (1990). Plant Physiology, 94, 401–405.

    Article  CAS  Google Scholar 

  12. Farrokhi, N., Burton, R. A., Brownfield, L., Hrmova, M., Wilson, S. M., Bacic, A. A., et al. (2006). Plant Biotechnology Journal, 4, 145–167.

    Article  CAS  Google Scholar 

  13. Lee, K. H., Piao, H. L., Kim, H. Y., Choi, S. M., Jiang, F., Hartung, W., et al. (2006). Cell, 126, 1109–1120.

    Article  CAS  Google Scholar 

  14. Yasumoto, K., Tsuji, H., Iwami, K., & Mitsuda, H. (1977). Agricultural and Biological Chemistry, 41, 1061–1067.

    Article  CAS  Google Scholar 

  15. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). Nuclear Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  16. Gunata, Z., Blondeel, C., Vallier, M. J., Lepoutre, J. P., Sapis, J. C., & Watanabe, N. (1998). Journal of Agricultural and Food Chemistry, 46, 2748–2753.

    Article  Google Scholar 

  17. Mateo, J. J., & Jimenez, M. (2000). Chromatographic A, 881, 557–567.

    Article  CAS  Google Scholar 

  18. Yang, S., Wang, L., Yan, Q., Jiang, Z., & Li, L. (2009). Food Chemistry, 115, 1247–1252.

    Article  CAS  Google Scholar 

  19. Harada, K. M., Tanaka, K., Fukuda, Y., Hashimoto, W., & Murata, K. (2005). Archives of Microbiology, 184, 215–224.

    Article  CAS  Google Scholar 

  20. Hardiman, E., Gibbs, M., Reeves, R., & Bergquist, P. (2010). Applied Biochemistry and Biotechnology, 161, 301–312.

    Article  CAS  Google Scholar 

  21. Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2001). Applied Biochemistry and Biotechnology, 90, 155–186.

    Article  CAS  Google Scholar 

  22. Garg, H. S., & Mitra, C. R. (1968). Phytochemistry, 7, 2053–2055.

    Article  CAS  Google Scholar 

  23. Garg, H. S., & Mitra, C. R. (1971a). Phytochemistry, 10, 2787–2791.

    Article  CAS  Google Scholar 

  24. Garg, H. S., & Mitra, C. R. (1971b). Phytochemistry, 10, 865–869.

    Article  CAS  Google Scholar 

  25. Sengupta, P., Chakraborty, A. K., Duffield, A. M., Durham, L. J., & Djerassi, C. (1967). Tetrahedron, 24, 1205–1213.

    Article  Google Scholar 

  26. Chaudhary, N. S., Shee, C., Islam, A., Ahmad, F., Yernool, D., Kumar, P., et al. (2008). Phytochemistry, 69, 2120–2126.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  29. Matsudaria, P. (1987). Journal of Biological Chemistry, 262, 10035–10038.

    Google Scholar 

  30. McIlvaine, T. C. (1921). Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  31. Whitmore, L. & Wallace, B. A. (2004) Nucleic acids research W668–W673.

  32. Weber, H., Borisjuk, L., & Wobus, U. (2005). Annual Review of Plant Biology, 56, 253–279.

    Article  CAS  Google Scholar 

  33. Sembdner, G., Atzorn, R., & Schneider, G. (1994). Plant Molecular Biology, 26, 1459–1481.

    Article  CAS  Google Scholar 

  34. Wittstocka, U., & Burow, M. (2010). In G. Jander (Ed.), The Arabidopsis book, vol. 8: glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance (p. e0134). Rockville: American Society of Plant Biologists. doi:10.1199/tab.0134.

    Google Scholar 

  35. Smeekens, S. (2000). Annual Review Plant Physiology Plant Molecular Biology, 51, 49–81.

    Article  CAS  Google Scholar 

  36. Hosel, E., Surholt, E., & Borgmann, E. (1978). European Journal of Biochemistry, 84, 487–492.

    Article  CAS  Google Scholar 

  37. Opassiri, R., Maneesan, J., Akiyama, T., Pomthong, B., Jin, S., Kimura, A., et al. (2010). Plant Science, 179, 273–280.

    Article  CAS  Google Scholar 

  38. Kotake, T., Nakagawa, N., Takeda, K., & Sakurai, N. (1997). Plant & Cell Physiology, 38, 194–200.

    CAS  Google Scholar 

  39. Escamilla-Trevino, L. L., Chen, W., Card, M. L., Shih, M., Cheng, C., & Poulton, J. E. (2006). Phytochemistry, 67, 1651–1660.

    Article  CAS  Google Scholar 

  40. Wakuta, S., Hamada, S., Ito, H., Matsuura, H., Nabeta, K., & Matsui, H. (2010). Phytochemistry, 71, 1280–1288.

    Article  CAS  Google Scholar 

  41. Hsieh, M. C., & Graham, T. L. (2001). Phytochemistry, 58, 995–1005.

    Article  CAS  Google Scholar 

  42. Li, S. C., Mazzotta, M. Y., Chien, S. F., & Li, Y. T. (1975). Journal of Biological Chemistry, 250, 6786–6791.

    CAS  Google Scholar 

  43. Biswas, S., Kayastha, A. M., & Seckle, R. (2003). Plant Physiology, 160, 327–337.

    Article  CAS  Google Scholar 

  44. Czjzek, M., Cicek, M., Zamboni, V., Burmeister, W. P., Bevan, R. D., Henrissat, B., et al. (2001). Biochemical Journal, 354, 37–46.

    Article  CAS  Google Scholar 

  45. Verdoucq, L., Moriniere, J., Bevan, D. R., Esen, A., Vasella, A., Henrissat, B., et al. (2004). Journal of Biological Chemistry, 279, 31796–31803.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CD and FPLC studies were performed at NMR facility and Macromolecular Crystallographic Unit respectively at Institute Instrumentation Centre (IIC), IIT Roorkee. Girijesh Kumar Patel and Bibekananda Kar gratefully acknowledge the financial support from Ministry of Human Resource Development and CSIR, Government of India, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, G.K., Kar, B. & Sharma, A.K. Characterization of a Thermostable Family 1 Glycosyl Hydrolase Enzyme from Putranjiva roxburghii Seeds. Appl Biochem Biotechnol 166, 523–535 (2012). https://doi.org/10.1007/s12010-011-9445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9445-2

Keywords

Navigation