Skip to main content
Log in

Plant hormone conjugation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andersson B, Sandberg G: Identification of endogenous N-(3-indoleacetyl) aspartic acid in Scots pine (Pinus silvestris L.) by combined gas chromatography-mass spectrometry, using high-performance liquid chromatography for quantification. J Chromatogr 238: 151–156 (1982).

    Article  Google Scholar 

  2. Asakawa S, Abe H, Natsume M: New acyl conjugated brassinosteroids from Lily pollen. XVth International Botany Congress (Yokohama 1993), Abstract 4163 (1993).

  3. Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS: Phytohormones, Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul 3: 23–29 (1984).

    Google Scholar 

  4. Bandurski RS: Metabolism of indole-3-acetic acid. In: Crozier A, Hillman JR (eds) The Biosynthesis and Metabolism of Plant Hormones, SEB-Series 23, pp. 183–200, Cambridge University Press, Cambridge (1984).

    Google Scholar 

  5. Bandurski RS, Desrosiers MF, Jensen P, Pawlak M, Schulze A: Genetics, chemistry, and biochemical physiology in the study of hormonal homeostasis. In: Karssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 1–2, Kluwer Academic Publishers, Dordrecht (1992).

    Google Scholar 

  6. Bandurski RS, Schulze A: Concentrations of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol 54: 257–262 (1974).

    Google Scholar 

  7. Bandurski RS, Schulze A, Desrosiers M, Jensen P, Epel B: Relationship between stimuli, IAA and growth. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 341–352, Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  8. Bandurski RS, Schulze A, Domagalski W, Komoszynski M, Lewer P, Nonhebel H: Synthesis and metabolism of conjugates of indole-3-acetic acid. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 11–20. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  9. Beffa R, Martin HV, Pilet P-E: In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94: 485–491 (1990).

    Google Scholar 

  10. Bialek K, Cohen JD: Hydrolysis of an indole-3-acetic acid amino acid conjugate by an enzyme preparation from Phaseolus vulgaris. Plant Physiol 75 (suppl): 108 (1984).

    Google Scholar 

  11. Bialek K, Cohen JD: Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris. Plant Physiol 88: 99–104 (1986).

    Google Scholar 

  12. Bialek K, Cohen JD: Free and conjugated indole-3-acetic acid in developing bean seeds. Plant Physiol 91: 775–779 (1989).

    Google Scholar 

  13. Blechschmidt S, Castel U, Gaskin P, Hedden P, Graebe JE, MacMillan J: GC/MS analysis of the plant hormones in seeds of Cucurbita maxima. Phytochemistry 23: 553–558 (1984).

    Article  Google Scholar 

  14. Bohlmann F, Wegner P, Jakupovic J, King RM: Struktur und Synthese von N-(Acetoxy)-jasmonoylphenylalaninmethylester aus Pràxelis clematidea. Tetrahedron 40: 2537–2540 (1984).

    Article  Google Scholar 

  15. Bopp M, Atzorn R: Hormonelle Regulation der Moosentwicklung. Naturwissenschaften 79: 337–346 (1992).

    Google Scholar 

  16. Brown BH, Crozier A, Sandberg G: Catabolism of indole-3-acetic acid in chloroplast fractions from light-grown Pisum sativum L. seedlings. Plant Cell Environm 9: 527–534 (1986).

    Google Scholar 

  17. Brückner C, Kramell R, Schneider G, Schmidt J, Preiss A, Sembdner G, Schreiber K: N-[(-)jasmonoyl]-S-tryptophan and a related tryptophane conjugate from Vicia faba. Phytochemistry 27: 275–276 (1988).

    Article  Google Scholar 

  18. Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K: Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262: 1051–1054 (1993).

    PubMed  Google Scholar 

  19. Burch LR, Horgan R: The purification of cytokinin oxidase from Zea mays kernels. Phytochemistry 28: 1313–1319 (1989).

    Article  Google Scholar 

  20. Burch LR, Horgan R: Cytokinin oxidase and the degradative metabolism of cytokinins. In: Kaminek M, Mok D, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 29–32. SPB Academic Publishing, The Hague (1992).

    Google Scholar 

  21. Catala C, Östin A, Chamarro J, Sandberg G, Crozier A: Metabolism of indole-3-acetic acid by pericarp discs from immature and mature tomato (Lycopersicon esculentum Mill). Plant Physiol 100: 1457–1463 (1992).

    Google Scholar 

  22. Chaffield JM, Armstrong DJ: Cytokinin oxidase from Phaseolus vulgaris callus cultures. Affinity for concanavalin A. Plant Physiol 88: 245–247 (1988).

    Google Scholar 

  23. Chen C-M, Eckert RL: Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol 59: 443–447 (1977).

    Google Scholar 

  24. Chen C-M, Petschow B: Metabolism of cytokinin: ribosylation of cytokinin bases by adenine phosphorylase from wheat germ. Plant Physiol 62: 871–874 (1978).

    Google Scholar 

  25. Chisnell JR: Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue. Plant Physiol 74: 278–283 (1984).

    PubMed  Google Scholar 

  26. Cohen JD: Identification and quantification analysis of indole-3-acetyl-aspartate from seeds of Glycine max L. Plant Physiol 70: 749–753 (1982).

    Google Scholar 

  27. Cohen JD, Bandurski RS: Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33: 403–430 (1982).

    Article  Google Scholar 

  28. Cohen JD, Bialek K: The biosynthesis of indole-3-acetic acid in higher plants. In: Crozier A, Hillman JR (eds) The Biosynthesis and Metabolism of Plant Hormones, SEB-Series 23, pp. 165–181, Cambridge University Press, Cambridge (1984).

    Google Scholar 

  29. Corcuera LJ, Bandurski RS: Biosynthesis of indol-3-yl-acetyl-myo-inositol arabinoside in kernels of Zea mays L. Plant Physiol 70: 1664–1666 (1982).

    Google Scholar 

  30. Corcuera LJ, Michalczuk L, Bandurski RS: Enzymic synthesis of indol-3-yl-acetyl-myo-inositol galactoside. Biochem J 207: 283–290 (1982).

    PubMed  Google Scholar 

  31. Cornforth JW, Milborrow BV, Ryback G: Synthesis of (+) abscisin II. Nature 205: 1269–1270 (1965).

    Google Scholar 

  32. Creelman RA: Abscisic acid physiology and biosynthesis in higher plants. Physiol Plant 75: 31–36 (1989).

    Google Scholar 

  33. Cross BE, Webster GRB: New metabolites of Gibberella fujikuroi. Part XV. N-jasmonoyl- and N-dihydrojasmonoyl-isoleucine. J Chem Soc Commun 1970: 1839–1842 (1970).

    Article  Google Scholar 

  34. Crozier A, Kuo CC, Durley RC, Pharis RP: The biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48: 867–877 (1970).

    Google Scholar 

  35. Crozier A, Turnbull CGN, Malcolm JM, Graebe JE: Gibberellin metabolism in cell-free preparations from Phaseolus coccineus. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins, pp. 83–93, Springer-Verlag, New York (1991).

    Google Scholar 

  36. Dashek WV, Singh BN, Walton DC: Abscisic acid localisation and metabolism in barley aleurone layers. Plant Physiol 64: 43–48 (1979).

    Google Scholar 

  37. Dathe W, Sembdner G, Kefeli VI, Vlasov PV: Gibberellins, abscisic acid, and related inhibitors in branches and bleeding sap of birch (Betula pubescens Ehrh.). Biochem Physiol Pflanzen 173: 238–248 (1978).

    Google Scholar 

  38. Dathe W, Sembdner G, Yamaguchi I, Takahashi N: Gibberellins and growth inhibitors in spring bleeding sap, roots and branches of Juglans regia L. Plant Cell Physiol 23: 115–123 (1982).

    Google Scholar 

  39. Davies PJ: Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff, Dordrecht/Boston/Lancaster (1987).

    Google Scholar 

  40. Demole E, Lederer E, Mercier D: Isolement et determination da la structure du jasmonate de methyle, constituant odorant characteristique de l'essence de jasmin. Helv Chim Acta 45: 675–685 (1962).

    Google Scholar 

  41. Dixon SC, Martin RC, Mok MC, Shaw G, Mok DWS: Zeatin glycosylation enzymes in Phaseolus. Isolation of O-glucoslytransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol 90: 1316–1321 (1989).

    Google Scholar 

  42. Doumas P, Imbault N, Moritz T, Oden PC: Detection and identification of gibberellins in douglas fir (Pseudotsuga menziesii) shoots. Physiol Plant 85: 489–494 (1992).

    Google Scholar 

  43. Ehmann A: Identification of 2-O-(indole-3-acetyl)-D-glucopyra-4-O-(indole-3-acetyl)-D-glucopyranose and 6-O-(indole-3-acetyl)-D-glucopyranose from kernels of Zea mays by gas-liquid chromatography-mass spectrometry. Carbohydr Res 34: 99–114 (1974).

    PubMed  Google Scholar 

  44. Entsch B, Letham DS, Parker CW, Summons RE, Gollnow BE: Metabolites of cytokinins. In: Skoog F (ed) Plant Growth Regulation 1979, pp. 109–118, Springer-Verlag, Berlin (1979).

    Google Scholar 

  45. Epstein E, Baldi BG, Cohen JD: Identification of indole-3-acetylglutamate from seeds of Glycine max L. Plant Physiol 80: 256–258 (1986).

    Google Scholar 

  46. Epstein E, Cohen JD, Bandurski RS: Concentration and metabolic turnover of indoles in germinating kernels of Zea mays. Plant Physiol 65: 415–421 (1980).

    Google Scholar 

  47. Farmer EE, Johnson RR, Ryan CA: Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98: 995–1002 (1992).

    Google Scholar 

  48. Farmer EE, Ryan CA: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716 (1990).

    PubMed  Google Scholar 

  49. Gawer M, Laloue M, Terrine C, Guern J: Metabolism and biological significance of benzyladenine-7-glucoside. Plant Sci Lett 8: 262–274 (1977).

    Google Scholar 

  50. Grambow HJ, Langenbeck-Schwich B: The relationship between oxidase activity, peroxidase activity, hydrogen peroxide, and phenolic compounds in the degradation of indole-3-acetic acid in vitro. Planta 157: 131–137 (1983).

    Google Scholar 

  51. Gundlach H, Müller MJ, Kutchan TM, Zenk MH: Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393 (1992).

    PubMed  Google Scholar 

  52. Harada H, Yokota T: Isolation of gibberellin A8-glucoside from shoot apices of Althaea rosea. Planta 92: 100–104 (1970).

    Google Scholar 

  53. Hemphill DD, Baker LR, Sell HM: Isolation of novel conjugated gibberellins from Cucumis sativus seed. Can J Biochem 51: 1647–1653 (1973).

    PubMed  Google Scholar 

  54. Herrmann G, Kramell H-M, Kramell R, Weidhase RA, Sembdner G: Biological activity of jasmonic acid conjugates. In: Schreiber K, Schütte H-R, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 315–322. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  55. Hiraga K, Kawabe S, Yokota T, Murofushi N, Takahashi N: Isolation and characterization of plant growth substances in immature seeds and etiolated seedlings of Phaseolus vulgaris. Agric Biol Chem 38: 2521–2527 (1974).

    Google Scholar 

  56. Hiraga K, Yokota T, Murofushi N, Takahashi N: Isolation and characterization of a free gibberellin and glucosyl esters of gibberellins in mature seeds of Phaseolus vulgaris. Agric Biol Chem 36: 345–347 (1972).

    Google Scholar 

  57. Hiraga K, Yokota T, Murofushi N, Takahashi N: Isolation and characterization of gibberellins in mature seeds of Phaseolus vulgaris. Agric Biol Chem 38: 2511–2520 (1974).

    Google Scholar 

  58. Hiraga K, Yokota T, Takahashi N: Biological activity of some synthetic gibberellin glucosyl esters. Phytochemistry 13: 2371–2376 (1974).

    Google Scholar 

  59. Hirai N, Fukui H, Koshimizu K: A novel abscisic acid metabolite from seeds of Robinia pseudacacia. Phytochemistry 17: 1625–1627 (1978).

    Google Scholar 

  60. Hirai N, Koshimizu K: A new conjugate of dihydrophaseic acid from avocado fruit. Agric Biol Chem 47: 365–371 (1983).

    Google Scholar 

  61. Ho THD, Uknes SJ: Regulation of abscisic acid metabolism in the aleurone layers of barley seeds. Plant Cell Rep 1: 270–273 (1982).

    Google Scholar 

  62. Horgan R: Present and future prospects for cytokinin research. In: Kaminek M, Mok D, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 3–14. SPB Academic Publishing, The Hague (1992).

    Google Scholar 

  63. Horgan R, Palni LMS, Scott IM, McGaw BA: Cytokinin biosynthesis and metabolism in Vinca rosea crown gall tissue. In: Guern J, Peaud-Lenoel C (eds) Metabolism and Molecular Activities of Cytokinins, pp. 56–65. Springer-Verlag, Berlin (1981).

    Google Scholar 

  64. Kamiya JE, Graebe JE: The biosynthesis of all major pea gibberellins in a cell free system from Pisum sativum. Phytochemistry 22: 681–689 (1983).

    Google Scholar 

  65. Kehlen A: Untersuchungen zum Metabolismus von Jasmonsäure. Ph.D. thesis, Universität Halle (1991).

  66. Kinashi H, Suzuki Y, Takeuchi S, Kawarada A: Possible metabolic intermediates from IAA to β-acid in rice bran. Agric Biol Chem 40: 2465–2470 (1976).

    Google Scholar 

  67. Kleczkowski K, Spanier K, Schell J: Cytokinins, their O-glucosides and riboside phosphates in the shoot-inducing mutants of tobacco crown gall tissue culture. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 138–152. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  68. Klee H, Horsch RB, Hinchee MA, Hoffmann NL: The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthesic gene products in transgenic Petunia plants. Genes Devel 1: 86–96 (1987).

    Google Scholar 

  69. Knöfel H-D, Schwarzkopf E, Müller P, Sembdner G: Enzymic glucosylation of gibberellins. J Plant Growth Regul 3: 127–140 (1984).

    Google Scholar 

  70. Kobayashi S, Sugioka K, Nakamo M, Tero-Kubota S: Analysis of stable end products and intermediates of oxidative decarboxylation of indole-3-acetic acid by horseradish peroxidase. Biochemistry 23: 4589–4597 (1984).

    Google Scholar 

  71. Koda Y: The role of jasmonic acid and related compounds in the regulation of flower development. Int Rev Cytol. 135: 155–199 (1992).

    PubMed  Google Scholar 

  72. Koshimizu K, Fukui H, Mitsui T: Isolation of (+) abscisyl-β-glucopyranoside from immature fruit of Lupinus luteus. Agric Biol Chem 30: 941–943 (1968).

    Google Scholar 

  73. Koshimizu K, Fukui H, Usuda S, Mitsui T: Plant growth inhibitors in seeds of pumpkin. In: Plant Growth Substances 1973, pp. 86–92. Hirokawa, Tokyo (1973).

  74. Kramell R, Atzorn R, Brückner C, Lehmann J, Schneider G, Sembdner G, Parthier B: Effects of osmotic stress on endogenous jasmonates in barley. I. Isolation and identification of jasmonic acid and its conjugates with amino acids as induced metabolites. J Plant Growth Regul (submitted).

  75. Laloue M, Pehte C: Dynamics of cytokinin metabolism in tobacco cells. In: Wareing P (ed) Plant Growth Substances 1982, pp. 215–223, Academic Press, London (1982).

    Google Scholar 

  76. Laloue M, Pehte-Terrine C, Guern J: Uptake and metabolism of cytokinins in tobacco cells: studies in relation to the expression of their biological activities. In: Guern J, Peaud-Lenoel C (eds) Metabolism and Molecular Activities of Cytokinins, pp. 80–96. Springer-Verlag, Berlin (1981).

    Google Scholar 

  77. Laloue M, Terrine C, Guern J: Cytokinins: Metabolism and biological activity of N6-(d2-isopentenyl) adenine in tobacco cells and callus. Plant Physiol 59: 478–483 (1977).

    Google Scholar 

  78. Lehmann H, Sembdner G: Plant hormone conjugates. In: Purohit SS (ed) Hormonal Regulation of Plant Growth and Development, vol. 3, pp. 245–310. Agro Botanical Publications, Bikaner (1986).

    Google Scholar 

  79. Lenton JR, Appleford NEJ: Gibberellin production and action during germination of wheat. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins, pp. 125–135. Springer-Verlag, New York (1991).

    Google Scholar 

  80. Lenton JR, Appleford NEJ, Crokers J: Gibberellin-dependent α-amylase production in germinating wheat (Triticum aestivum) grain. In: Frontiers of Gibberellin Research 1993, Abstr. 19. Tokyo Riken (1993).

    Google Scholar 

  81. Letham DS, Palni LMS: The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34: 163–197 (1983).

    Article  Google Scholar 

  82. Letham DS, Palni LMS, Tao GQ, Gollnow Bl, Bates CM: Regulators of cell division in plant tissues. XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassay. J Plant Growth Regul 2: 3–17 (1983).

    Google Scholar 

  83. Letham DS, Tuo GQ, Parker CW: An overview of cytokinin biosynthesis. In: Wareing PF (ed) Plant Growth Substances 1982, pp. 143–153. Academic Press, London (1982).

    Google Scholar 

  84. Liebisch HW: Uptake, translocation and metabolism of GA3 glucosyl ester. In: Schreiber K, Schütte HR, Sembdner G (eds) Biochemistry and Chemistry of Plant Growth Regulators, pp. 109–113. Institute for Plant Biochemistry, Academy of Sciences of the GDR, Halle (1974).

    Google Scholar 

  85. Lorenzi R, Horgan R, Heald JK: Gibberellin A9 glucosyl ester in needles of Picea sitchensis. Phytochemistry 15: 789–790 (1976).

    Article  Google Scholar 

  86. Loveys BR, Milborrow BV: Isolation and characterisation of 1′-O-abscisic acid-β-glucopyranoside from vegetative tomato tissue. Aust J Plant Physiol 8: 571–589 (1981).

    Google Scholar 

  87. Loveys BR, Milborrow BV: Metabolism of abscisic acid. In: Crozier A, Hillman JR (eds) The Biosynthesis and Metabolism of Plant Hormones, SEB-Series 23, pp. 71–103. Cambridge University Press, Cambridge (1984).

    Google Scholar 

  88. Magnus V: Auxin conjugation. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 31–40. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  89. Magnus V, Hangarter RP, Good NE: Interaction of free indole-3-acetic acid and its amino acid conjugates in tomato hypocotyl cultures. J Plant Growth Regul 11: 67–75 (1992).

    Google Scholar 

  90. Magnus V, Nigovic B, Hangarter RP, Good NE: N-(Indol-3-ylacetyl)amino acids as sources of auxin in plant tissue culture. J Plant Growth Regul 11: 19–28 (1992).

    Google Scholar 

  91. Marquardt V, Adam G: Recent advances in brassinosteroid research. In: Ebing W (ed) Chemistry of Plant Protection, pp. 103–139. Springer-Verlag, Berlin/Heidelberg/New York (1991).

    Google Scholar 

  92. Martin RC, Martin RR, Mok MC, Mok DWS: A monoclonal antibody specific to zeatin O-glycosyltransferase of Phaseolus. Plant Physiol 94: 1290–1294 (1990).

    Google Scholar 

  93. Martin RC, Mok MC, Shaw G, Mok DWS: An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiol 90: 1630–1635 (1989).

    Google Scholar 

  94. Martineau B, Houck CM, Sheehy RE, Hiatt WR: Fruitspecific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects of fruit ripening and defence-related gene expression in leaves. Plant J 5: 11–19 (1994).

    Article  Google Scholar 

  95. Matsuura H, Yoshihara T, Ichihara A, Kikuta Y, Koda Y: Tuber-forming substances in Jerusalem artichoke (Helianthus tuberosus L.). Biosci Biotech Biochem 57: 1253–1256 (1993).

    Google Scholar 

  96. McGaw BA: Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones and Their Role in Plant Growth and Development, pp. 76–93. Martinus Nijhoff, Dordrecht (1987).

    Google Scholar 

  97. McGaw BA, Horgan R: Cytokinin catabolism and cytokinin oxidase. Phytochemistry 22: 1103–1105 (1983).

    Article  Google Scholar 

  98. McGaw BA, Horgan R: Cytokinin biosynthesis and metabolism. In: Crozier A, Hillman JR (eds) The Biosynthesis and Metabolism of Plant Hormones, SEB-Series 23, pp. 105–133, Cambridge University Press, Cambridge (1984).

    Google Scholar 

  99. McGaw BA, Horgan R, Heald JK, Wullems GJ, Schilperoort RA: Mass-spectrometric quantitation of cytokinins in tobacco crown-gall tumours induced by mutated octopine Ti plasmids of Agrobacterium tumefaciens. Planta 176: 230–234 (1988).

    Google Scholar 

  100. Meyer A, Gross D, Schmidt J, Jensen E, Vorkefeld S, Semdner G: Cucurbic acid-related metabolites of the plant growth regulator dihydrojasmonic acid in barley (Hordeum vulgare). Biochem Physiol Pflanzen 187: 401–408 (1991).

    Google Scholar 

  101. Meyer A, Gross D, Vorkefeld S, Kummer M, Schmidt J, Sembdner G, Schreiber K: Metabolism of the plant growth regulator dihydrojasmonic acid in barley shoots. Phytochemistry 28: 1007–1011 (1989).

    Article  Google Scholar 

  102. Meyer A, Schmidt J, Gross D, Jensen E, Rudolph A, Vorkefeld S, Sembdner G: Amino acid conjugates as metabolites of the plant growth regulator dihydrojasmonic acid in barley (Hordeum vulgare). J Plant Growth Regul 10: 17–25 (1991).

    Google Scholar 

  103. Meyer A, Schneider G, Sembdner G: Endogenous gibberellins and inhibitors of the douglas fir. Abstract 51, International Symposium on Plant Growth Regulators, Liblice (1984).

  104. Michalczuk L, Bandurski RS: In vitro biosynthesis of esters of indole-3-acetic acid Plant Physiol 65: 157 (suppl.) (1980).

    Google Scholar 

  105. Michalczuk L, Bandurski RS: Enzymic synthesis of 1-O-indole-3-acetyl-β-D-glucose and indole-3-acetylmyo-inositol. Biochem. J. 207: 273–283 (1982).

    PubMed  Google Scholar 

  106. Miersch O, Brückner C, Schmidt J, Sembdner G: Cyclopentane fatty acids from Gibberella fujikuroi. Phytochemistry 31: 3835–3937 (1992).

    Article  Google Scholar 

  107. Miersch O, Herrmann G, Kramell H-M, Sembdner G: Biological acitivity of jasmonic acid glucosyl ester. Biochem Physiol Pflanzen 182: 425–428 (1987).

    Google Scholar 

  108. Milborrow BV: The identification of (+)-abscisin II [(+)-dormin] in plants and measurement of its concentration. Planta 76: 93–113 (1967).

    Google Scholar 

  109. Milborrow BV: The metabolism of abscisic acid. J Exp Bot 21: 17–29 (1970).

    Google Scholar 

  110. Milborrow BV: The chemistry and physiology of abscisic acid. Annu Rev Plant Physiol 25: 259–307 (1974).

    Article  Google Scholar 

  111. Milborrow BV, Vaughan G: characterisation of dihydrophaseic acid 4′-O-β-D-glucopyranoside as a major metabolite of abscisic acid. Aust J Plant Physiol 9: 361–372 (1982).

    Google Scholar 

  112. Mok MC, Mok DWS, Marsden KE, Shaw G: The biological activity and metabolism of a novel cytokinin metabolite, O-xylosylzeatin, in callus tissue of Phaseolus vulgaris and P. lunatus. J Plant Physiol 130: 423–431 (1987).

    Google Scholar 

  113. Mok DWS, Mok MC, Martin RC, Bassil NV, Lightfoot DA: Zeatin metabolism in Phaseolus: enzymes and genes. In: Karssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 597–606. Kluwer, Dordrecht (1992).

    Google Scholar 

  114. Mok DWS, Mok MC, Shaw G: Cytokinin activity, metabolism and function in Phaseolus. In: Kaminek M, Mok D, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 41–46. SPB Academic Publishing, The Hague (1992).

    Google Scholar 

  115. Mok DWS, Mok MC, Shaw G, Dixon SC, Martin RC: Genetic differences in the enzymatic regulation of zeatin metabolism in Phaseolus embryos. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 267–274, Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  116. Monteiro AM, Crozier A, Sandberg G: The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings of Dalbergia dolichopetala. Planta 174: 561–568 (1988).

    Google Scholar 

  117. Moritz T: The use of combined capillary liquid chromatography/mass spectrometry for the identification of a gibberellin glucosyl conjugate. Phytochem Anal 3: 32–37 (1992).

    Google Scholar 

  118. Moritz T, Schneider G, Jensen E: Capillary liquid chromatography/fast atom bombardment mass spectrometry of gibberellin glucosyl conjugates. Biol Mass Spectrom 21: 554–559 (1992).

    Google Scholar 

  119. Motyka V, Kaminek M: Characterization of cytokinin oxidase from tobacco and poplar callus cultures. In: Kaminek M, Mok D, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 33–39. SPB Academic Publishing, The Hague (1992).

    Google Scholar 

  120. Müller P, Knöfel H-D, Sembdner G: Studies on the enzymatical synthesis of gibberellin-O-glucosides. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, metabolism and function, pp. 115–119, VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  121. Murakami Y: Distribution of bound gibberellin in higher plants and its hydrolysis by enzymes from different sources. Bull Nat Inst Agric Sci Ser D 36: 69–123 (1985).

    Google Scholar 

  122. Murofushi N, Yang Y-Y, Yamaguchi I, Schneider G, Kato Y: Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of gibberellin conjugates. In: Karssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 900–904. Kluwer Academic Publishers, Dordrecht (1992).

    Google Scholar 

  123. Naumann R, Dörffling K: Variation of free and conjugated abscisic acid, phaseic acid and dihydrophaseic acid levels in ripening barley grains. Plant Sci Lett 27: 111–117 (1982).

    Google Scholar 

  124. Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O: Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TI-DNA. Plant Physiol 102: 363–371 (1982).

    Google Scholar 

  125. Nonhebel HM, Cooney TP: Measurement of the in vitro rate of indole-3-acetic acid turnover. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 333–340. Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  126. Nonhebel HM, Kruse LI, Bandurski RS: Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid-7′-O-β-D-glucopyranoside. J Biol Chem 260: 12685–12689 (1985).

    PubMed  Google Scholar 

  127. Ohkuma K, Addicott FT, Smith OE, Thiessen WE: The structure of abscisin II. Tetrahedron Lett 29: 2529–2535 (1965).

    Article  Google Scholar 

  128. Östin A, Monteiro AM, Crozier A, Jensen E, Sandberg G: Analysis of indole-3-acetic acid metabolites from Dalbergia dolichopetala by high-performance liquid chromatography-mass spectrometry. Plant Physiol 100: 63–68 (1992).

    Google Scholar 

  129. Palmer MV, Horgan R, Wareing PF: Cytokinin metabolism in Phaseolus vulgaris. I. Variation in cytokinin levels in leaves of decapitated plants in relation to bud outgrowth. J Exp Bot 32: 1231–1241 (1981).

    Google Scholar 

  130. Palmer MV, Horgan R, Wareing PF: Cytokinin metabolism in Phaseolus vulgaris. II. Comparative metabolism of exogenous cytokinins by detached leaves. Plant Sci Lett 22: 187–195 (1981).

    Google Scholar 

  131. Parker CW, Letham DS: Regulators of cell division in plant tissues, XVI. Metabolism of zeatin by radish cotyledons and hypocotyls. Planta 114: 199–218 (1973).

    Google Scholar 

  132. Parker CW, Letham DS: Regulators of cell division in plant tissues. XVII. Metabolism of zeatin in Zea mays seedlings. Planta 115: 337–344 (1974).

    Google Scholar 

  133. Parker CW, Letham DS, Gollnow BI, Summons RE, Duke CC, McLeod JK: Regulators of cell division in plant tissues. XXV. Metabolism of zeatin in lupin seedlings. Planta 142: 239–251(1978).

    Google Scholar 

  134. Parthier B: Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9: 1–7 (1990).

    Google Scholar 

  135. Parthier B: Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Bot Acta 104: 446–454 (1991).

    Google Scholar 

  136. Parthier B, Brückner C, Dathe W, Hause B, Herrmann G, Knöfel HD, Kramell H-M, Kramell R, Lehmann J, Miersch O, Reinbothe S, Sembdner G, Wasternack C, zurNieden U: Jasmonates: metabolism, biological activities, and modes of action in senescence and stress responses. In: Karssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 276–288, Kluwer Academic Publishers, Dordrecht (1992).

    Google Scholar 

  137. Percival FW, Bandurski RS: Esters of indole-3-acetic acid from Avena seeds. Plant Physiol 58: 60–67 (1986).

    Google Scholar 

  138. Pierce M, Raschke K: Synthesis and metabolism of abscisic acid in detached leaves of Phaseolus vulgaris L. after loss and recovery of turgor. Planta 153: 156–165 (1981).

    Google Scholar 

  139. Piskornik Z, Bandurski RS: Purification and partial characterization of a glucan containing indole-3-acetic acid. Plant Physiol 50: 176–182 (1972).

    Google Scholar 

  140. Porat R, Borochov A, Halevy AH: Enhancement of Petunia and Dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regul 13: 297–301 (1993).

    Google Scholar 

  141. Reinecke DM, Bandurski RS: Oxindole-3-acetic acid, an catabolite in Zea mays. Plant Physiol 71: 211–213 (1983).

    Google Scholar 

  142. Reinecke DM, Bandurski RS: Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays seedlings. Plant Physiol 75 (suppl): 108 (1984).

    Google Scholar 

  143. Reinecke DM, Bandurski RS: Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 24–42. Martinus Nijhoff, Dordrecht/Boston/Lancaster (1987).

    Google Scholar 

  144. Riov J, Bangerth F: Metabolism of auxin in tomato fruit tissue: formation of high molecular weight conjugates of oxindole-3-acetic acid via the oxidation of indole-3-acetylaspartic acid. Plant Physiol 100: 1396–1402 (1992).

    Google Scholar 

  145. Rivier L, Gaskin P, Albone KS, MacMillan J: GC-MS Identification of endogenous gibberellins and gibberellin conjugates as their permethylated derivatives. Phytochemistry 20: 687–692 (1981).

    Article  Google Scholar 

  146. Rock CD, Zeevaart JAD: Abscisic (ABA)-aldehyde is a precursor to, and 1′,4′-trans-ABA-diol a catabolite of, ABA in apple. Plant Physiol 93: 915–923 (1990).

    Google Scholar 

  147. Rood SB: Genetic and environmental control of gibberellin physiology in Brassica. In: Frontiers of Gibberellin Research 1993, Abstract 38. Tokyo Riken (1993).

    Google Scholar 

  148. Rood SB, Pharis RP: Evidence for reversible conjugation of gibberellins in higher plants. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 183–190. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  149. Ros Barcelo A, Pedreno MA, Ferrer MA, Sabater F, Munoz R: Indole-3-methanol is the main product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases from Lupinus. Planta 181: 448–450 (1990).

    Google Scholar 

  150. Ryan CA: The search for the proteinase inhibitor-inducing factor. PIF. Plant Mol Biol 19: 123–133 (1992).

    PubMed  Google Scholar 

  151. Sandberg G, Jensen E, Crozier A: Analysis of 3-indole carboxylic acid in Pinus silvestris needles. Phytochemistry 23: 99–102 (1984).

    Article  Google Scholar 

  152. Sandberg G, Crozier A, Ernstsen A: Indole-3-acetic acid and related compounds. In: Rivier L, Crozier A (eds) The Principles and Practice of Plant Hormone Analysis, vol. 2, pp. 169–301. Academic Press, London (1987).

    Google Scholar 

  153. Schliemann W: Hydrolysis of conjugated gibberellins by β-glucosidases of dwarf rice (Oryza sativa L. cv. ‘Tanginbozu’). J Plant Physiol 116: 123–132 (1984).

    Google Scholar 

  154. Schliemann W: β-Glucosidase with gibberellin A8–2-O-glucoside hydrolysing activity from pods of runner beans. Phytochemistry 27: 689–692 (1988).

    Article  Google Scholar 

  155. Schliemann W: Zum Konzept der reversiblen Konjugation bei Phytohormonen. Naturwissenschaften 78: 392–401 (1991).

    Google Scholar 

  156. Schliemann W, Schaller B, Jensen E, Schneider G: Native gibberellin-O-glucosides from mature seeds of Phaseolus coccineus. Phytochemistry 35: 35–38 (1994).

    Article  Google Scholar 

  157. Schliemann W, Schneider G: Untersuchungen zur enzymatischen Hydrolyse von Gibberellin-O-glucosiden. I. Hydrolysegeschwindigkeiten von Gibberellin-13-O-glucosiden. Biochem Physiol Pflanzen 174: 738–745 (1979).

    Google Scholar 

  158. Schliemann W, Schneider G: Metabolic formation and occurrence of gibberellin A1-3-O-β-D-glucopyranoside in immature fruits of Phaseolus coccineus L. Plant Growth Regul 8: 85–90 (1989).

    Google Scholar 

  159. Schmidt J, Kramell R, Brückner C, Sembdner G, Schreiber K, Stach J, Jensen E: Gas chromatographic/mass spectrometric and tandem mass spectrometric investigations of synthetic amino acid conjugates of jasmonic acid and enogenously occurring related compounds from Vicia faba L. Biomed Environm Mass Spectrom 19: 327–338 (1990).

    Google Scholar 

  160. Schmidt J, Schneider G, Jensen E: Capillary gas chromatography/mass spectrometry of permethylated gibberellin glucosides. Biomed Environm Mass Spectrom 17: 7–13 (1988).

    Google Scholar 

  161. Schneider G: Über strukturelle Einflüsse bei der Glucosylierung von Gibberellinen. Tetrahedron 37: 545–549 (1981).

    Article  Google Scholar 

  162. Sohneider G: Gibberellin conjugates. In: Crozier A (ed) The Biochemistry and Physiology of Gibberellins, vol 1, pp. 389–456. Praeger Publishers, New York (1983).

    Google Scholar 

  163. Schneider G: Gibberellin conjugation. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 158–166. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  164. Schneider G, Jensen E, Spray CR, Phinney BO: Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L. Proc Natl Acad Sci USA 89: 8045–8048 (1992).

    PubMed  Google Scholar 

  165. Schneider B, Kolbe A, Porzel A, Adam G: A novel metabolite of 24-epi-brassinolide in cell suspension culture of Lycopersicon esculentum. Phytochemistry 36: 319–321 (1994).

    Article  Google Scholar 

  166. Schneider G, Schaller B, Jensen E: RP-HPLC Separation of permethylated free and glucosylated gibberellins: a method for the analysis of gibberellin metabolites. Phytochem Anal, submitted (1994).

  167. Schneider G, Schliemann W: The occurrence of gibberellin-O-glucosides in mature seeds of Gramineae and Leguminosae. XVth International Botany Congress, Yokohama, 1993, Abstract 4160 (1993).

  168. Schneider G, Schliemann W: Conjugation of gibberellins: an overvies. Plant Growth Regul, in press (1994).

  169. Schneider G, Schliemann W, Schaller B, Jensen E: Identification of native gibberellin-O-glucosides in Zea mays L. and Hordeum vulgare L. In: Karssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 566–570. Kluwer Academic Publishers, Dordrecht (1992).

    Google Scholar 

  170. Schneider G, Schreiber K, Jensen E, Phinney BO: Synthesis of gibberellin A29-β-D-glucosides and β-D-glucosyl derivatives of [17-13C, T2]gibberellin A5, A20, and A29. Liebigs Ann Chem 1990: 491–494 (1990).

    Google Scholar 

  171. Schneider G, Sembdner G, Jensen E, Bernhard U, Wagenbreth D: GC-MS identification of native gibberellin-O-glucosides in pea seeds. J Plant Growth Regul 11: 15–18 (1992).

    Article  Google Scholar 

  172. Schneider G, Sembdner G, Schreiber K: Synthese von O(3)- und O(13)-glucosylierten Gibberellinen. Tetrahedron 33: 1391–1397 (1977).

    Article  Google Scholar 

  173. Schneider G, Sembdner G, Schreiber K, Phinney BO: Partial synthesis of some physiologically relevant gibberellin glucosyl conjugates. Tetrahedron 45: 1355–1364 (1989).

    Article  Google Scholar 

  174. Schreiber K, Schneider G, Sembdner G, Focke I: Isolierung von O(2)-Acetyl-Gibberellinsäure als Stoffwechselprodukt von Fusarium moniliforme Sheld. Phytochemistry 5: 1221–1225 (1966).

    Article  Google Scholar 

  175. Schreiber K, Weiland J, Sembdner G: Isolierung und Struktur eines Gibberellinglucosides. Tetrahedron Lett 1967: 4285–4288 (1967).

    Article  Google Scholar 

  176. Schreiber K, Weiland J, Sembdner G: Isolierung von Gibberellin-A8-O(3)-β-D-glucopyranosid aus Früchten von Phaseolus coccineus. Phytochemistry 9: 189–198 (1970).

    Article  Google Scholar 

  177. Scott IM, Martin GC, Horgan R, Heald JK: Mass spectrometric measurement of zeatin glucoside levels in Vinca rosea L. crown gall tissue. Planta 154: 273–276 (1982).

    Google Scholar 

  178. Sembdner G: Conjugates of plant hormones. In: Schreiber K, Schütte HR, Sembdner G (eds) Biochemistry and Chemistry of Plant Growth Regulators, pp. 283–302. Institute for Plant Biochemistry Academy of Sciences of the GDR, Halle (1974).

    Google Scholar 

  179. Sembdner G, Groß D, Liebisch H-W, Schneider G: Biosynthesis and metabolism of plant hormones. In: MacMillan J (ed) Encyclopedia of Plant Physiology, New Series, vol 9, pp. 281–444. Springer-Verlag, Berlin/Heidelberg/New York (1980).

    Google Scholar 

  180. Sembdner G, Knöfel H-D, Schwarzkopf E, Liebisch HW: In vitro glucosylation of gibberellins. Biol Plant 27: 231–236 (1985).

    Google Scholar 

  181. Sembdner G, Parthier B: The biochemistry and the physiology and molecular actions of jasmonates. Annu Rev Plant Physiol Mol Biol 44: 569–589 (1993).

    Article  Google Scholar 

  182. Sembdner G, Schliemann W, Schneider G: Biochemical and physiological aspects of gibberellin conjugation. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins, pp. 249–263, Springer-Verlag, New York (1991).

    Google Scholar 

  183. Sembdner G, Schneider G: Gibberellin conjugation: a physiologically relevant process in hormone metabolism of plants. In: Kutacek M, Elliott MC, Machackova I (eds) Molecular Aspects of Hormonal Regulation of Plant Development, Proceedings 14th Biochemical Congress Prague 1988, pp. 151–173, SPB Academic Publishers, The Hague (1990).

    Google Scholar 

  184. Sembdner G, Weiland J, Aurich O, Schreiber K: Isolation, structure and metabolism of a gibberellin glucoside. In: Plant Growth Regulators, pp. 70–86. SCI Monograph 31, London (1968).

  185. Sharkey TD, Raschke K: Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol 65: 291–297 (1980).

    Google Scholar 

  186. Sitbon F, Edlund A, Gardestrom P, Olsson O, Sandberg G: Compartmentation of indole-3-acetic acid metabolism in protoplasts isolated from leaves of wild-type and IAA-overproducing transgenic tobacco plants. Planta 191: 274–279 (1993).

    Article  Google Scholar 

  187. Sitbon F, Hennion S, Sundberg B, Little CHA, Olsson O, Sandberg G: Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99: 1062–1069 (1992).

    Google Scholar 

  188. Sitbon F, Östin A, Olsson O, Sandberg G: Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overproducing transgenic tobacco plants, and identification of the main conjugates by frit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol 101: 313–320 (1993).

    PubMed  Google Scholar 

  189. Sitbon F, Sundberg B, Olsson O, Sandberg G: Free and conjugated indoleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95: 480–485 (1991).

    Google Scholar 

  190. Stoddart JL, Venis MA: Molecular and subcellular aspects of hormone action. In: MacMillan J (ed) Encyclopedia of Plant Physiology, New Series, vol 9, pp. 445–510. Springer-Verlag, Berlin/Heidelberg/New York (1980).

    Google Scholar 

  191. Summons RE, Entsch B, Parker CW, Letham DS: Mass spectrometric analysis of cytokinins in plant tissues. III. Quantitation of the cytokinin glucoside complex of lupin pods by saturable isotope dilution. FEBS Letta 107: 21–25 (1979).

    Article  Google Scholar 

  192. Summons RE, Letham DS, Gollnow Bl, Parker CW, Entsch B, Johnson LP, McLeod JK, Rolfe BG: Cytokinin translocation and metabolism in species of the Leguminosae: studies in relation to shoot and nodule development. In: Guern J, Peaud-Lenoel C (eds) Metabolism and Activity of Cytokinins, pp. 69–80, Springer-Verlag, Berlin (1981).

    Google Scholar 

  193. Summons RE, McLeod JK, Parker CW, Letham DS: The occurrence of raphanatin as an endogenous cytokinin in radish seed: identification and quantitation by GC-MS using deuterium internal standards. FEBS Lett 82: 211–214 (1977).

    Article  PubMed  Google Scholar 

  194. Sundberg B, Sandberg G, Jensen E: Identification and quantification of indole-3-methanol in etiolated seedlings of Scots pine (Pinus silvestris L.). Plant Physiol 77: 952–955 (1985).

    Google Scholar 

  195. Suzuki H, Kim SK, Takahashi N, Yokota T: Metabolism of castasterone and brassinolide in mung bean explant. Phytochemistry 33: 1361–1367 (1993).

    Article  Google Scholar 

  196. Tinelli ET, Sondheimer E, Walton DC: Metabolites of 2-14C-abscisic acid. Tetrahedron Lett 2: 139–140 (1973).

    Article  Google Scholar 

  197. Tsurumi S, Asahi Y: Identification of jasmonic acid in Mimosa pudica and its inhibitory efect on auxin- and light-induced opening of the pulvinules. Physiol Plant 64: 207–211 (1985).

    Google Scholar 

  198. Tsurumi S, Wada S: Metabolism of indole-3-acetic acid and natural occurrence of dioxindole-3-acetic acid derivatives in Vicia roots. Plant Cell Physiol 21: 1515–1525 (1980).

    Google Scholar 

  199. Tsurumi S, Wada S: Identification of 3-(O-β-glucosyl)-2-indolone- 3-acetylaspartic acid as a new indole-3-acetic acid metabolite in Vicia seedlings. Plant Physiol 79: 667–671 (1985).

    Google Scholar 

  200. Tsurumi S, Wada S: Identification of 3-hydroxy-2-indolone-3-acetylaspartic acid as a new indole-3-acetic acid metabolite in Vicia roots. Plant Cell Physiol 27: 559–562 (1986).

    Google Scholar 

  201. Tsurumi S, Wada S: Oxidation of indole-3-acetylaspartic acid in Vicia. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 353–359. Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  202. Turnbull CGN, Crozier A: Metabolism of [1,2-3H]gibberellin A4 by epicotyls and cell-free preparations from Phaseolus coccineus L. seedlings. Planta 178: 267–274 (1989).

    Google Scholar 

  203. Ueda M, Bandurski RS: Structure of indole-3-acetic acid myoinositol esters and pentamethyl-myoinositols. Phytochemistry 13: 243–253 (1974).

    Article  Google Scholar 

  204. Ueda M, Ehmann A, Bandurski RS: Gas-liquid chromatographic analysis of indole-3-acetic acid myoinositol esters in maize kernels. Plant Physiol 46: 715–719 (1970).

    Google Scholar 

  205. Ueda J, Kato J: Promotive effect of methyl jasmonate on oat leaf senescence in the light. Z Pflanzenphysiol 103: 357–359 (1981).

    Google Scholar 

  206. Walton DC: Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489 (1980).

    Article  Google Scholar 

  207. Walton DC: Structure-activity relationships of abscisic acid analogs and metabolites. In: Addicott FT (ed) Abscisic Acid, pp. 113–146, Praeger Scientific, New York (1983).

    Google Scholar 

  208. Weiler EW: Octadecanoid-derived signalling molecules involved in touch perception in a higher plant. Bot Acta 106: 2–4 (1993).

    Google Scholar 

  209. Xia Z-Q, Zenk MH: A new metabolite of the plant growth regulator jasmonic acid. Poster, 18th IUPAC Symposium Chemical and Natural Products, Strassbourg (1992).

  210. Yamaguchi I, Kobayashi M, Takahashi N: Isolation and characterization of glucosyl esters of gibberellin A5 and A44 from immature seeds of Pharbitis purpurea. Agric Biol Chem 44: 1975–1977 (1980).

    Google Scholar 

  211. Yamaguchi I, Yokei M, Nishizawa M, Yang YY, Chinio M, Murofushi N: Immunological technique in the research of gibberellins. XVth International Botany Congress, Yokohama, 1993, Abstract 4.3.1.3 (1993).

  212. Yamaguchi I, Yokota T, Yoshida S, Takahashi N: High pressure liquid chromatography of conjugated gibberellins. Phytochemistry 18: 1699–1702 (1979).

    Article  Google Scholar 

  213. Yamane H: Antheridiogens and gibberellins in Schizaeaceous ferns. XVth International Botany Congress, Yokohama, 1993, Abstract 4.3.2.3 (1993).

  214. Yamane H, Sato Y, Nohara K, Nakayama M, Murofushi N, Takahashi N, Takeno K, Furuya M, Furber M, Mander LN: The methyl ester of a new gibberellin, GA73: the principal antheridiogen in Lygodium japonicum. Tetrahedron Lett 29: 3959–3962 (1988).

    Article  Google Scholar 

  215. Yamane H, Takahashi N, Takeno K, Furuya M: Identification of gibberellin A9 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta 147: 251–256 (1979).

    Google Scholar 

  216. Yamane H, Yamaguchi I, Murofushi N, Takahashi N: Isolation and structure of gibberellin A35 and its glucoside from immature seed of Cytisus scoparius. Agric Biol Chem 35: 1144–1146 (1971).

    Google Scholar 

  217. Yamane H, Yamaguchi I, Murofushi N, Takahashi N: Isolation and structures of gibberellin A35 and its glucoside from immature seed of Cytisus scoparius. Agric Biol Chem 38: 649–655 (1974).

    Google Scholar 

  218. Yokota T, Kim SK, Kosaka Y, Ogino Y, Takahashi N: Conjugation of brassinosteroids. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated Plant Hormones: Structure, Metabolism and Function, pp. 288–296. VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  219. Yokota T, Kim SK, Ogino Y, Takahashi N: Various brassinisteroids from Phaseolus vulgaris seeds: structure and biological activity. Proc 14th Annu Plant Growth Regulator Soc America Meeting, Honolulu, pp. 28–29 (1987).

  220. Yokota T, Kobayashi S, Yamane H, Takahashi N: Isolation of a novel gibberellin glucoside, 3-O-β-D-glucopyranosyl gibberellin A1 from Dolichos lablab seed. Agric Biol Chem 42: 1811–1812 (1978).

    Google Scholar 

  221. Yokota T, Murofushi N, Takahashi N: Structure of new gibberellin glucoside in immature seeds of Pharbitis nil. Tetahedron Lett 1970: 1489–1491 (1970).

    Article  Google Scholar 

  222. Yokota T, Murofushi N, Takahashi N, Katsumi M: Biological activities of gibberellins and their glucosides in Pharbitis nil. Phytochemistry 10: 2943–2949 (1971).

    Article  Google Scholar 

  223. Yokota T, Murofushi N, Takahashi N, Tamura S: Gibberellins in immature seeds of Pharbitis nil. III. Isolation and structures of gibberellin glucosides. Agric Biol Chem 35: 583–595 (1971).

    Google Scholar 

  224. Yokota T, Ogino Y, Suzuki H, Takahashi N, Saimoto H, Fujioka S, Sakurai A: Metabolism and biosynthesis of brassinosteroids. In: Cutler HC, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, Bioactivity and Applications, pp. 86–96. ACS Symposium Ser 474, American Chemical Society, Washington (1991).

    Google Scholar 

  225. Yokota T, Takahashi N, Murofushi N, Tamura S: Isolation of gibberellins A26 and A27 and their glucosides from immature seeds of Pharbitis nil. Planta 87: 180–184 (1969).

    Google Scholar 

  226. Yokota T, Takahashi N, Murofushi N, Tamura S: Structures of new gibberellin glucosides in immature seeds of Pharbitis nil. Tetrahedron Lett 1969: 2081–2084 (1969).

    Article  Google Scholar 

  227. Yokota T, Yamazaki S, Takahashi N, Iitaka Y: Structure of pharbitic acid, a gibberellin-related diterpenoid. Tetrahedron Lett 1974: 2957–2960 (1974).

    Article  Google Scholar 

  228. Yoshihara T, Omer EA, Koshino H, Sakamura S, Kikuta Y, Koda Y: Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53: 2835–2837 (1989).

    Google Scholar 

  229. Zeevaart JAD, Creelman RA: Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473 (1988).

    Article  Google Scholar 

  230. Zeevaart JAD, Gage DA, Creelman RA: Recent studies of the metabolism of abscisic acid. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 233–240, Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  231. Zeevaart JAD, Heath TG, Gage DA: Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns. Plant Physiol 91: 1594–1601 (1989).

    Google Scholar 

  232. Zeevaart JAD, Rock CD, Fantauzzo F, Heath TG, Gage DA: Metabolism of ABA and its physiological implications. In: Davies WJ, Jones HG (eds) Abscisic Acid: Physiology and Biochemistry, pp. 39–52. Bios Scientific Publications, Oxford (1991).

    Google Scholar 

  233. Zenk MH: 1-(Indole-3-acetyl)-β-D-glucose, a new compound in the metabolism of indole-3-acetic acid in plants. Nature 191: 493–494 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sembdner, G., Atzorn, R. & Schneider, G. Plant hormone conjugation. Plant Mol Biol 26, 1459–1481 (1994). https://doi.org/10.1007/BF00016485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016485

Key words

Navigation