Skip to main content

Advertisement

Log in

Pretreatment of Corn Stover with Twin-Screw Extrusion Followed by Enzymatic Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment of biomass before subjecting it to enzyme saccharification is crucial with regards to facilitating access of enzyme to biomass. Extrusion, as a continuous and cost-effective pretreatment method, combines heating with high shear and mixing opening cell walls at the microscopic scale, thus largely increasing the specific surface area (SSA) of biomass for enzyme adsorption. The objective of this study was to examine the effect of extrusion as a pretreatment method and the underlying factors ruling the improvement of sugar yields. The optimum glucose, xylose, and combined sugar recoveries were 48.79%, 24.98%, and 40.07%, respectively, at 27.5% moisture content and 80 rpm screw speed. These yields were 2.2, 6.6, and 2.6 times higher than those for untreated corn stover. X-ray diffraction analysis showed that the crystallinity index was not a good indicator of sugar yield. However, scanning electron microscopy showed that the cellulose network was exposed due to the destruction of the lignin sheath. The Langmuir adsorption model was shown to be an effective tool for the estimation of the SSA of corn stover. The SSA of pretreated samples was significantly amplified over the control, revealing that extrusion can open the cell wall at the microscopic scale, which was especially favorable on sugar yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  2. Lynd, L. R. (1996). Annual Review of Energy and the Environment, 21, 403–465.

    Article  Google Scholar 

  3. US DOE. (2003). Roadmap for agricultural biomass feedstock supply in the United States. DOE/NE-ID-11129, November.

  4. Wilhelm, W. W., Johnson, J. M. F., Hatfield, J. L., Voorhees, W. B., & Linden, D. R. (2004). Agronomy Journal, 96, 1–17.

    Article  Google Scholar 

  5. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. http://www.osti.gov/bridge.

  6. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels, Bioproducts and Biorefining, 1, 119–134.

    Article  Google Scholar 

  7. Karunanithy, C., & Muthukumarappan, K. (2010). Applied Biochemistry and Biotechnology, 162, 264–279.

    Article  CAS  Google Scholar 

  8. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  9. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  10. Perez, J., Dorado, J. M., Rubia, T. D., & Martinez, J. (2002). International Microbiology, 5, 53–63.

    Article  CAS  Google Scholar 

  11. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production (pp. 292–324). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  12. Galbe, M., & Zacchi, G. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 41–65.

    Article  CAS  Google Scholar 

  13. Mosier, N. S., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  14. Lee, S. H., Teramoto, Y., Tanaka, N., & Endo, T. (2007). Improvement of enzymatic saccharification of woody biomass by nano-fibrillation using extruder. In: The 57th Annual Meeting of the Japan Wood Research Society.

  15. Abe, K., Iwamoto, S., & Yano, H. (2007). Biomacromolecules, 8, 3276–3278.

    Article  CAS  Google Scholar 

  16. Karunanithy, C., Muthukumarappan, K., & Julson, J. L. (2008). ASABE Transactions. ASABE Paper No. 084109. St. Joseph: ASABE.

  17. De Vrije, T., De Haas, G. G., Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). International Journal of Hydrogen Energy, 27, 1381–1390.

    Article  Google Scholar 

  18. Tsao. (1980). US Patent No. 4208476.

  19. Syed, S. H. R., & Steven, M. (1992). US Patent No. 5120559.

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. LAP, NREL/TP-510-42618.

  21. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of extractives in biomass. LAP, NREL/TP-510-42619.

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. LAP, NREL/TP-510-42622.

  23. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., et al. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. LAP, NREL/TP-510-42621.

  24. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. LAP, NREL/TP-510-42629.

  25. Linder, Å., & Gatenholm, P. (2004). Effect of cellulose substrate on assembly of xylans. In: Hemicelluloses: Science and technology, chapter 16, pp. 236–253.

  26. Buschle, D. G., & Zeronian, S. H. (1992). Journal of Applied Polymer Science, 45, 967–979.

    Article  Google Scholar 

  27. Ago, M., Endo, T., & Hirotsu, T. (2004). Cellulose, 11, 163–167.

    Article  CAS  Google Scholar 

  28. Inglesby, M. K., & Zeronian, S. H. (1996). Cellulose, 3, 165–181.

    Article  CAS  Google Scholar 

  29. Annadurai, G., Chellapandian, M., & Krishnan, M. R. V. (1999). Environmental Monitoring and Assessment, 59, 111–119.

    Article  CAS  Google Scholar 

  30. Ougiya, H., Hioki, N., Watanabe, K., Morinaga, Y., Yoshinaga, F., & Samejima, M. (1998). Bioscience, Biotechnology, and Biochemistry, 62, 1880–1884.

    Article  CAS  Google Scholar 

  31. Goodrich, J. D., & Winter, W. T. (2007). Biomacromolecules, 8, 252–257.

    Article  CAS  Google Scholar 

  32. Kim, T. H., Nghiem, N. P., & Hicks, K. B. (2009). Applied Biochemistry and Biotechnology, 153, 171–179.

    Article  CAS  Google Scholar 

  33. Lee, S. H., Teramoto, Y., & Endo, T. (2009). Bioresource Technology, 100, 275–279.

    Article  CAS  Google Scholar 

  34. Yoshida, H., Kataoka, T., Maekawa, M., & Nango, M. (1989). Chemical Engineering Journal, 41, B1–B9.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the help of Mr. Eric Newgard in operating HPLC and the authors want to extend their appreciation to Mr. Robert Weber’s assistance in extrusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milford A. Hanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Xu, Y. & Hanna, M.A. Pretreatment of Corn Stover with Twin-Screw Extrusion Followed by Enzymatic Saccharification. Appl Biochem Biotechnol 166, 458–469 (2012). https://doi.org/10.1007/s12010-011-9441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9441-6

Keywords

Navigation