Skip to main content
Log in

Influence of Extruder Temperature and Screw Speed on Pretreatment of Corn Stover while Varying Enzymes and Their Ratios

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment is being the first and most expensive step, it has pervasive impacts on all other steps in overall conversion process. There are several pretreatment methods using physical, chemical, and biological principles which are under various stages of investigation. Extrusion can be used as one of the physical pretreatment methods towards biofuel production. The objective of this study was to evaluate the effect of barrel temperature and screw speed on sugar recovery from corn stover, to select a suitable enzyme combination and its ratio. Corn stover was pretreated in a single screw extruder with five screw speeds (25, 50, 75, 100, and 125 rpm) and five barrel temperatures (25, 50, 75, 100, and 125 °C). In order to select a suitable enzyme combination and ratio, different levels of cellulase and β-glucosidase, multienzyme complex and β-glucosidase were used during saccharification of pretreated corn stover. From the statistical analysis, it was found that screw speed and temperature had a significant effect on sugar recovery from corn stover. Higher glucose, xylose, and combined sugar recovery of 75, 49, and 61%, respectively, were recorded at 75 rpm and 125 °C. This pretreatment condition resulted in 2.0, 1.7, and 2.0 times higher than the control sample using 1:4 cellulase and β-glucosidase combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ingram, L. O., & Doran, J. (1995). FEMS Microbiology Reviews, 16, 235–241.

    Article  CAS  Google Scholar 

  2. Fales, S. L., Hess, J. R., & Wilhelm, W.W. (2008). Resource. pp. 10-11.

  3. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. http://www.osti.gov/bridge.

  4. Saha, B., & Bothast, R. (1997). ACS Symposium Series, 666, 46–56.

    Article  CAS  Google Scholar 

  5. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R., Lee, Y. Y., Holtzapple, M. et al. (2005). Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  6. Yang, B., & Wyman, C. E. (2008). Biofuels Bioproducts and Biorefining, 2(1), 26–40.

    Article  CAS  Google Scholar 

  7. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96(18), 1959–1966.

    Article  CAS  Google Scholar 

  8. Cadoche, L., & Lopez, G. D. (1989). Biological Wastes, 30, 153–157.

    Article  CAS  Google Scholar 

  9. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., & Lynd, L. R. (1996). Applied Biochemistry and Biotechnology, 57–58, 157–169.

    Article  Google Scholar 

  10. Hsu, T-A. (1996). Pretreatment of biomass. In C. E. Wyman (Ed.), Handbook on bioethanol production and utilization. Applied energy technology series. Taylor & Francis, Washington DC, Chapter 10.

  11. Ooshima, H., Burns, D. S., & Converse, A. O. (1990). Biotechnology and Bioengineering, 36(5), 446–452.

    Article  CAS  Google Scholar 

  12. Wyman, C. E. (1999). Annual Review Energy Environment, 24, 189–226.

    Article  Google Scholar 

  13. Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E., & Dale, B. E. (1992). Applied Biochemistry and Biotechnology, 34(5), 5–21.

    Article  Google Scholar 

  14. Taherzadeh, M. J., & Karimi, K. (2007). BioResources, 2(4), 707–738.

    CAS  Google Scholar 

  15. Zhan, X., Wang, D., Bean, S. R., Mo, X., Sun, X. S., & Boyle, D. (2006). Ind. Crop Prod, 23(3), 304–310.

    Article  CAS  Google Scholar 

  16. Helle, S. S., Duff, S. J. B., & Cooper, D. G. (1993). Biotechnology and Bioengineering, 42, 611–617.

    Article  CAS  Google Scholar 

  17. Nguyen, Q. A., & Saddler, J. N. (1991). Bioresource Technology, 35, 275–282.

    Article  CAS  Google Scholar 

  18. Wilke, C. R., Yang, R. D., Sciamanna, A. F., & Freitas, R. P. (1981). Biotechnology and Bioengineering, 23, 163–183.

    Article  CAS  Google Scholar 

  19. Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C., & Holtzapple, M. (2003). Biotechnology and Bioengineering, 82, 745–749.

    Article  CAS  Google Scholar 

  20. Ladisch, M. R., Gong, C. S., & Tsao, G. T. (1977). Dev. Ind. Microbiol. Ser, 18, 157–168.

    Google Scholar 

  21. Hong, J., Ladisch, M. R., Gong, C. S., Wankat, P. C., & Tsao, G. T. (1981). Biotechnology and Bioengineering, 23, 2779–2788.

    Article  CAS  Google Scholar 

  22. Varga, E., Schmidt, A. S., Reczey, K., & Thomsen, A. B. (2003). Applied Biochemistry and Biotechnology, 104, 37–50.

    Article  CAS  Google Scholar 

  23. Kadam, K. L., & McMillan, J. D. (2003). Bioresource Technology, 88, 17–25.

    Article  CAS  Google Scholar 

  24. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., et al. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. NREL/TP-510-42621. National Renewable Energy Laboratory, Golden, CO.

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623. National Renewable Energy Laboratory, Golden, CO.

  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, CO.

  27. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. NREL/TP-510-42629. National Renewable Energy Laboratory, Golden, CO.

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, CO.

  29. Torget, R., Walter, P. J., Himmel, M. & Grohmann, K. (1991). Applied Biochemistry and Biotechnology, 28(29), 75–86.

    Article  Google Scholar 

  30. Yang, B., & Wyman, C. E. (2004). Biotechnology and Bioengineering, 86(1), 88–95.

    Article  CAS  Google Scholar 

  31. Zhu, Y., Lee, Y. Y., & Elander, R. T. (2004). Applied Biochemistry and Biotechnology, 117, 103–114.

    Article  CAS  Google Scholar 

  32. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1131.

    Article  Google Scholar 

  33. Kim, T. H., Lee, Y. Y., Sunwoo, C., & Kim, J. S. (2006). Applied Biochemistry and Biotechnology, 133, 41–57.

    Article  CAS  Google Scholar 

  34. Öhgren, K., Bura, R., Saddler, J. N., & Zacchi, G. (2007). Bioresource Technology, 98(13), 2503–2510.

    Article  Google Scholar 

  35. Brown, A. (1985). Journal of Applied Biochemistry, 7, 371–387.

    CAS  Google Scholar 

  36. Jung, H. G., & Deetz, D. A. (1993). Cell wall lignification and degradability. In H. G. Jung, et al. (Eds.), Forage cell wall structure and digestibility (pp. 315–346). Madison, WI: ASA, CSSA, and SSSA.

    Google Scholar 

  37. Dale, B. E., Henk, L. L., & Shiang, M. (1985). Developments in Industrial Microbiology, 26, 223–233.

    CAS  Google Scholar 

  38. Karunanithy, C., Muthukumarappan, K., & Julson, J. L. (2008). ASABE Paper No. 084128. St. Joseph, Mich.: ASABE.

  39. Karunanithy, C., Muthukumarappan, K., & Julson, J. L. (2008). ASABE Paper No. 084109. St. Joseph, Mich.: ASABE.

  40. Muthukumarappan, K., & Julson, J. L. (2007). Pretreatment of biomass using a novel extrusion process. 15th European biomass conference & exhibition from research to market development. Berlin, Germany, 7-11 May 2007.

  41. Dale, B. E., Weaver, J., & Byers, F. M. (1999). Applied Biochemistry and Biotechnology, 77–79, 35–45.

    Article  Google Scholar 

  42. de Vrije, T., de Haas, G. G., Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). International Journal of Hydrogen Energy, 27(11–12), 1381–1390.

    Google Scholar 

  43. Zeng, M., Mosier, N. S., Huang, C.-P., Sherman, D. M., & Ladisch, M. R. (2007). Biotechnology and Bioengineering, 97(2), 265–278.

    Article  CAS  Google Scholar 

  44. Teymouri, F., Laureano-Perez, L., Alizadeh, H., & Dale, B. E. (2005). Bioresource Technology, 96(18), 2014–2018.

    Article  CAS  Google Scholar 

  45. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96(18), 1967–1977.

    Article  CAS  Google Scholar 

  46. Kim, S., & Holtzapple, M. T. (2005). Bioresource Technology, 96(18), 1994–2006.

    Article  CAS  Google Scholar 

  47. Kim, T. H., & Lee, Y. Y. (2005). Bioresource Technology, 96(18), 2007–2013.

    Article  CAS  Google Scholar 

  48. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Bioresource Technology, 96(18), 1986–1993.

    Article  CAS  Google Scholar 

  49. Liu, C., & Wyman, C. E. (2005). Bioresource Technology, 96(18), 1978–1985.

    Article  CAS  Google Scholar 

  50. Mosier, N. S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., et al. (2005). Applied Biochemistry and Biotechnology, 125, 77–97.

    Article  CAS  Google Scholar 

  51. Varga, E., Szengyel, Z., & Reczey, K. (2002). Applied Biochemistry and Biotechnology, 98–100, 73–87.

    Article  Google Scholar 

  52. Kaar, W., & Holtzapple, M. (2000). Biomass Bioenerg, 18, 189–199.

    Article  CAS  Google Scholar 

  53. Xin, L., & Saka, S. (2008). Int. J Agric. & Biol. Eng, 1(2), 2 39-45.

  54. Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Bioresource Technology, 98, 554–559.

    Article  CAS  Google Scholar 

  55. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun, R. (2002). Applied Biochemistry and Biotechnology, 98–100, 49–58.

    Article  Google Scholar 

  56. Canettieri, E. V., Rocha, G. J. M., Carvalho, J. A., Jr., & Silva, J. B. A. (2007). Bioresource Technology, 98, 422–428.

    Article  CAS  Google Scholar 

  57. Lee, S. H., Teramoto, Y., & Endo, T. (2009). Bioresource Technology, 100(1), 275–279.

    Article  CAS  Google Scholar 

  58. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Bioresource Technology, 59, 129–136.

    Article  CAS  Google Scholar 

  59. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90(1), 39–47.

    Article  CAS  Google Scholar 

  60. Schell, D. J., Farmer, J., Newman, M., & Mcmillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105–108, 69–85.

    Article  Google Scholar 

  61. Chen, S.-F., Mowery, R. A., Chambliss, C. K., & van Walsum, G. P. (2007). Biotechnology and Bioengineering, 98, 1135–1145.

    Article  CAS  Google Scholar 

  62. Varga, E., Reczey, K., & Zacchi, G. (2004). Applied Biochemistry and Biotechnology, 113–116, 509–523.

    Article  Google Scholar 

  63. Kim, T. H., Nghiem, N. P., & Hicks, K. B. (2009). Applied Biochemistry and Biotechnology, 153, 171–179.

    Article  CAS  Google Scholar 

  64. Öhgren, K., Galbe, M., & Zacchi, G. (2005). Applied Biochemistry and Biotechnology, 124(1–3), 1055–1067.

    Article  Google Scholar 

  65. Kim, T. H., & Lee, Y. Y. (2006). Bioresource Technology, 97(2), 224–232.

    Article  CAS  Google Scholar 

  66. Öhgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). Enz. Microb. Technol, 40, 607–613.

    Article  Google Scholar 

  67. Lu, Y., Wang Y., Xu, G., Chu, J., Zhuang, Y., & Zhang, S. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8306-0.

  68. Lau, M. W., Dale, B. E., & Balan, V. (2008). Biotechnology and Bioengineering, 99, 529–539.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the Agricultural Experiment Station and North Central Sun Grant Center at South Dakota State University through a grant provided by the US Department of Transportation, Office of the Secretary, Grant No. DTOS59-07-G-00054. Also, enzymes supplied by Novozymes, Inc for conducting this study were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnadurai Karunanithy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunanithy, C., Muthukumarappan, K. Influence of Extruder Temperature and Screw Speed on Pretreatment of Corn Stover while Varying Enzymes and Their Ratios. Appl Biochem Biotechnol 162, 264–279 (2010). https://doi.org/10.1007/s12010-009-8757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8757-y

Keywords

Navigation