Skip to main content
Log in

A Galactomannan-Driven Enhancement of the In Vitro Multiplication Rate for the Marubakaido Apple Rootstock (Malus prunifolia (Willd.) Borkh) is Not Related to the Degradation of the Exogenous Galactomannan

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agar is a complex mixture of gel-forming polysaccharides. Gelling agents are very often used to provide proper support for plants grown in semisolid culture media. And agar is the most frequently used gelling agent in plant tissue culture media. Galactomannans, another group of gel-forming polysaccharides, consists of a (1 → 4)-linked β-d-mannopyranosyl backbone partially substituted at O-6 with d-galactopyranosyl side groups. In this work, we demonstrate that a statistically significant 2.7-fold increase on the multiplication rate (MR) for in vitro-grown Marubakaido (Malus prunifolia) shoots was associated with a 12.5% replacement of agar in the semi-solid culture media for a galactomannan obtained from seeds of Schizolobium paraybae. This increase on MR was due mainly to a 1.9-fold increase in the number of main branches and an 8.6-fold increase in the number of primary lateral branches. Gas liquid chromatography and thin layer chromatography analyzes demonstrated that the galactomannan-driven enhancement of the in vitro multiplication rate of the Marubakaido apple rootstock was not related to the galactomannan degradation. To the best of our knowledge, this is the first report on the successful use of partial replacement of high quality agar by a galactomannan from S. paraybae in a micropropagation system for a tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berrios, E. F., Gentzbittel, L., Serieys, H., Alibert, G., & Sarrafi, A. (1999). Plant Cell, Tissue and Organ Culture, 59, 65–69.

    Article  CAS  Google Scholar 

  2. Henderson, W. E., & Kinnersley, A. M. (1988). Plant Cell, Tissue and Organ Culture, 15, 17–22.

    Article  Google Scholar 

  3. Puchooa, D., Purseramen, P. N., & Rujbally, B. R. (1999). Science and Technology Research Journal, 3, 129–144.

    Google Scholar 

  4. Romberger, J. A., & Tabor, C. A. (1971). American Journal of Botany, 58, 131–140.

    Article  Google Scholar 

  5. Marinho-Soriano, E., & Bourret, E. (2003). Bioresource Technology, 90, 329–333.

    Article  CAS  Google Scholar 

  6. Yaphe, W. (1984). Hydrobiology, 116/117, 171–186.

    Article  Google Scholar 

  7. Arnott, S., Fulmer, A., & Scott, W. E. (1974). Journal of Molecular Biology, 90, 269–284.

    Article  CAS  Google Scholar 

  8. Stanley, N. F. (1995). In A. M. Stephen (Ed.), Food polysaccharides and their applications: agars (pp. 187–204). New York: Marcel Dekker.

    Google Scholar 

  9. Gangopadhyay, G., Roy, S. K., & Mukherjee, K. K. (2009). African Journal of Biotechnology, 8, 2923–2928.

    Google Scholar 

  10. Samonte, J. L., Mendoza, E. M. T., Ilag, L. L., dela Cruz, N. B., & Ramirez, D. A. (1989). Phytochemistry, 28, 2269–2273.

    Article  CAS  Google Scholar 

  11. Morrison, W. R., & Karkalas, J. (1990). In P. M. Dey & J. B. Harborne (Eds.), Methods in plant biochemistry: starch, vol. 2: carbohydrates (pp. 323–352). London: Academic.

    Google Scholar 

  12. Ono, L., Wollinger, W., Rocco, I. M., Coimbra, T. L. M., Gorin, P. A. J., & Sierakowski, M. R. (2003). Antiviral Research, 60, 201–208.

    Article  CAS  Google Scholar 

  13. Dea, I. C. M., & Morrison, A. (1975). Advances in Carbohydrate Chemistry and Biochemistry, 31, 241–312.

    Article  CAS  Google Scholar 

  14. Babbar, S. B., Jain, R., & Walia, N. (2005). In Vitro Cellular & Developmental Biology—Plant, 41, 258–261.

    Article  Google Scholar 

  15. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  16. Ganter, J. L. M. S., Milas, M., Corrêa, J. B. C., Reicher, F., & Rinaudo, M. (1992). Carbohydrate Polymers, 17, 171–175.

    Article  CAS  Google Scholar 

  17. Sloneker, J. H. (1972). Methods in Carbohydrate Chemistry, 6, 20–24.

    CAS  Google Scholar 

  18. Sassaki, G. L., Souza, L. M., Cipriani, T. R., & Iacomini, M. (2008). In M. J. S. Waksmundzka-Hajnos & T. Kowalska (Eds.), Thin layer chromatography in phytochemistry: TLC in carbohydrates (pp. 255–276). Boca Raton: CRC Press.

    Google Scholar 

  19. Bonga, J. M., & von Aderkas, P. (1992). In vitro culture of trees. Dordrecht: Kluwer.

    Google Scholar 

  20. Pereira-Netto, A. B., Roessner, U., Fujioka, S., Bacic, A., Asami, T., Yoshida, S., et al. (2009). Tree Physiology, 29, 607–620.

    Article  CAS  Google Scholar 

  21. Jain, R., & Babbar, S. B. (2005). Current Science, 88, 292–295.

    Google Scholar 

  22. Jain, R., & Babbar, S. B. (2011). Asian Journal of Biotechnology, 3(2), 153–164.

    Article  Google Scholar 

  23. Lucyszyn, N., Quoirin, M., Anjos, A., & Sierakowski, M. R. (2005). Polímeros: Ciência e Tecnologia, 15, 146–150.

    CAS  Google Scholar 

  24. Dobranszki, J., Magyar-Tábori, K., & Tombácz, E. (2011). Plant Biotechnology Reports. doi:10.1007/s11816-011-0188-x.

  25. Lucyszyn, N., Quoirin, M., Koehler, H. S., Reicher, F., & Sierakowski, M. R. (2006). Scientia Horticulturae, 107, 358–364.

    Article  CAS  Google Scholar 

  26. Bresolin, M. B., Michel, M., Rinaudo, M., & Ganter, J. L. M. S. (1998). International Journal of Biological Macromolecules, 23, 263–275.

    Article  CAS  Google Scholar 

  27. Angyal, S. J. (1997). Carbohydrate Research, 300, 279–281.

    Article  CAS  Google Scholar 

  28. Speck, J. C. (1958). Advances in carbohydrate chemistry (pp. 63–103). New York: Academic Press Inc.

    Google Scholar 

  29. Al-Assaf, S., Phillips, G. O., & Williams, P. A. (2006). Food Hydrocolloids, 20, 369–377.

    Article  CAS  Google Scholar 

  30. Murphy, R. M. (1997). Current Opinion in Biotechnology, 8, 25–30.

    Article  CAS  Google Scholar 

  31. Reed, W. F. (1995). Macromolecular Chemistry and Physics, 196, 1539–1575.

    Article  CAS  Google Scholar 

  32. Wyatt, P. J. (1993). Analytica Chimica Acta, 272, 1–40.

    Article  CAS  Google Scholar 

  33. Pereira-Netto, A. B., Petkowicz, C. L. O., Cruz-Silva, C. T. A., Gazzoni, M. T., Mello, A. F. P., & Silveira, J. L. M. (2007). In Vitro Cellullar & Developmental Biology-Plant, 43, 356–363.

    Article  CAS  Google Scholar 

  34. Viebke, C., & Piculell, L. (1996). Carbohydrate Polymers, 29, 1–5.

    Article  CAS  Google Scholar 

  35. Nunes, J. C. O., Barpp, A., Silva, F. C., & Pedrotti, E. L. (1999). Revista Brasileira de Fruticultura, 21, 191–195.

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Council for Scientific and Technological Development—Brazil (CNPq), Rede Nanoglicobiotec/MCT-CNPq and PRONEX–CARBOIDRATOS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adaucto B. Pereira-Netto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira-Netto, A.B., Meneguin, R.G., Biz, A. et al. A Galactomannan-Driven Enhancement of the In Vitro Multiplication Rate for the Marubakaido Apple Rootstock (Malus prunifolia (Willd.) Borkh) is Not Related to the Degradation of the Exogenous Galactomannan. Appl Biochem Biotechnol 166, 197–207 (2012). https://doi.org/10.1007/s12010-011-9416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9416-7

Keywords

Navigation