Skip to main content
Log in

Heterologous Expression Characteristics of Trichoderma viride Endoglucanase V in the Silkworm, Bombyx mori L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient degradation of cellulose needs a synergistic reaction of the cellulolytic enzymes, which include exoglucanases, endoglucanases, and β-1,4-glucosidase. In this study, we used an improved Bac-to-Bac/BmNPV baculovirus expression system, which lacks the virus-encoded chitinase cathepsin (v-cath) genes of Bombyx mori nucleopolyhedrovirus (BmNPV), to express the endoglucanase V (EG V) gene from Trichoderma viride in silkworm BmN cells and silkworm larvae, and analyzed the characteristics of the recombinant enzyme in silkworm larvae. The result showed that an around 36-kDa protein was visualized in BmN cells at 48 h after the second-generation recombinant mBacmid/BmNPV/EG V baculovirus infection. The crude enzyme extract from the recombinant baculoviruses-infected silkworms exhibited a significant maximum activity at the environmental condition of pH 5.0 and a temperature of 50 °C, and increased 39.86% and 37.76% compared with that from blank mBacmid/BmNPV baculovirus-infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 10.0 and at temperature range from 40 to 60 °C. The availability of large quantities of EG V that the silkworm provides might greatly facilitate the future research and the potential application in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact, 9, 32.

    Article  Google Scholar 

  2. Wilson DB, Irwin DC, (1999) Genetics and properties of cellulases. In: Advances in Biochemical Engineering / Biotechnology: Recent Progress in Bioconversion vol 65. Springer-Verlag, Berlin pp 1–21

  3. Beguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13, 25–58.

    Article  CAS  Google Scholar 

  4. Watanabe, H., & Tokuda, G. (2001). Animal cellulases. Cellular and Molecular Life Sciences, 58, 1167–1178.

    Article  CAS  Google Scholar 

  5. Davison, A., & Blaxter, M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Molecular Biology and Evolution, 22, 1273–1284.

    Article  CAS  Google Scholar 

  6. Penttila, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R., & Knowles, J. (1986). Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene, 45, 253–263.

    Article  CAS  Google Scholar 

  7. Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., et al. (1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. European Journal of Biochemistry, 170, 575–581.

    Article  CAS  Google Scholar 

  8. Miettinen-Oinonen, A., & Suominen, P. (2002). Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and Environmental Microbiology, 68, 3956–3964.

    Article  CAS  Google Scholar 

  9. Wu, S., Ding, S., Zhou, R., & Li, Z. (2007). Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics. Journal of Biotechnology, 130, 364–369.

    Article  CAS  Google Scholar 

  10. Miyajima, A., Schreurs, J., Otsu, K., Kondo, A., Arai, K., & Maeda, S. (1987). Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene, 58, 273–281.

    Article  CAS  Google Scholar 

  11. Lee, K. S., Je, Y. H., Woo, S. D., Sohn, H. D., & Jin, B. R. (2006). Production of a cellulase in silkworm larvae using a recombinant Bombyx mori nucleopolyhedrovirus lacking the virus-encoded chitinase and cathepsin genes. Biotechnological Letters, 28, 645–650.

    Article  CAS  Google Scholar 

  12. Li, Xing-hua, Wang, D., Zhou, F., Yang, Hua-jun, Bhaskar, R., Jia-biao, Hu, et al. (2010). Cloning and expression of a cellulase gene in the silkworm, Bombyx mori by improved Bac-to-Bac/BmNPV baculovirus expression system. Molecular Biology Reports, 37, 3721–3728.

    Article  CAS  Google Scholar 

  13. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  14. Maeda, S. (1994). Expression of foreign genes in insect cells using baculovirus vectors. In K. Maramorosch & A. H. McIntosh (Eds.), Insect cell biotechnology (pp. 1–31). Boca Raton: CRC Press.

    Google Scholar 

  15. Jeefrey, L. C., & Charles, S. C. (1996). Insect cell expression technology. In J. L. Cleland & C. S. Craik (Eds.), Protein engineering (pp. 183–218). New York: Wiley-Liss Press.

    Google Scholar 

  16. Choudary, P. V., Kamita, S. G., & Maeda, S. (1995). Expression of foreign genes in Bombyx mori larvae using baculovirus vectors. In C. D. Richardson (Ed.), Methods in molecular biology. Baculovirus expression protocols, vol. 39. New Jersey: Humana.

    Google Scholar 

  17. Li, S., Ip, D. T., Lin, H. Q., Liu, J. M., Miao, Y. G., Ke, L. J., et al. (2010). High-level expression of functional recombinant human butyrylcholinesterase in silkworm larvae by Bac-to-Bac System. Chemico-biological interactions, 187(1–3), 101–5105.

    Article  CAS  Google Scholar 

  18. Zhao, Y., Li, X., Cao, G., Xue, R., & Gong, C. (2009). Expression of hIGF-I in the silk glands of transgenic silkworms and in transformed silkworm cells. Science in China. Series C: Life Sciences, 52, 1131–1139.

    Article  CAS  Google Scholar 

  19. Liu, J. M., David, Wan Chi Cheong, Ip, Denis Tsz-Ming, Li, Xing-hua, Li, Guang-li, Xiao-feng, Wu, et al. (2009). High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Molecular Biology Reports, 36, 329–335.

    Article  CAS  Google Scholar 

  20. Tang, B., Pan, H., Zhang, Q., & Ding, L. (2009). Cloning and expression of cellulase gene EG1 from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresource Technology, 100, 6129–6132.

    Article  CAS  Google Scholar 

  21. van Wyk, N., den Haan, R., & van Zyl, W. H. (2010). Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. doi:10.1007/s00253-00010-02618-z.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 30972141/C120110) and the Chinese Universities Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-gen Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xh., Wang, Mx., Zhang, P. et al. Heterologous Expression Characteristics of Trichoderma viride Endoglucanase V in the Silkworm, Bombyx mori L.. Appl Biochem Biotechnol 165, 728–736 (2011). https://doi.org/10.1007/s12010-011-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9291-2

Keywords

Navigation