Skip to main content
Log in

Study on Improvement of Extracellular Production of Recombinant Thermobifida fusca Cutinase by Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli is one of the most commonly used host strains for recombinant protein production. More and more research works on the production of recombinant protein indicate that extracellular production throughout a culture medium is more convenient and attractive compared to intracellular production. In present work, inducing temperature and isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration were investigated to decrease the formation of inclusion body and increase the amount of soluble recombinant cutinase initially. Enzyme activity in the culture medium reached to 118.9 U/ml at 64 h of culture, and no inclusion body was detected in cytoplasm under the inducement condition of 0.2 mM IPTG and 30°C. In addition, it was found that a large amount of cutinase had been accumulated in periplasm since 16-h cultivation under the same inducement condition. Therefore, glycine and surfactant sodium taurodeoxycholate (TDOC) were further used to promote the leakage of recombinant cutinase from periplasm. Supplied with 100 mM glycine and 1 mM TDOC, the amount of cutinase in periplasm decreased remarkably, and the activity in the culture medium reached to 146.2 and 149.2 U/ml after 54 h of culturing, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Egmond, M. R., & de Vlieg, J. (2000). Biochimie, 82, 1015–1021.

    Article  CAS  Google Scholar 

  2. Vertommen, M. A., Nierstrasz, V. A., Veer, M., & Warmoeskerken, M. M. (2005). Journal of Biotechnology, 120, 376–386.

    Article  CAS  Google Scholar 

  3. Alisch, M. M., Herrmann, A., & Zimmermann, W. (2006). Biotechnological Letters, 28, 681–685.

    Article  Google Scholar 

  4. Degani, O., Gepstein, S., & Dosoretz, C. G. (2002). Applied Biochemistry and Biotechnology, 102–103, 277–289.

    Article  Google Scholar 

  5. Sebastian, J., & Kolattukudy, P. E. (1988). Archives of Biochemistry and Biophysics, 263, 77–85.

    Article  CAS  Google Scholar 

  6. Fett, W. F., Gerard, H. C., Moreau, R. A., Osman, S. F., & Jones, L. E. (1992). Applied and Environmental Microbiology, 58, 2123–2130.

    CAS  Google Scholar 

  7. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., & Bostock, R. M. (2000). Archives of Biochemistry and Biophysics, 382, 31–38.

    Article  CAS  Google Scholar 

  8. Ferreira, B. S., Calado, C. R., van Keulen, F., Fonseca, L. P., Cabral, J. M., & da Fonseca, M. M. (2003). Applied Microbiology and Biotechnology, 61, 69–76.

    CAS  Google Scholar 

  9. Longhi, S., & Cambillau, C. (1999). Biochimica et Biophysica Acta, 1441, 185–196.

    CAS  Google Scholar 

  10. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., & Bostock, R. M. (2002). Fungal Genetics and Biology, 35, 261–276.

    Article  CAS  Google Scholar 

  11. Chen, S., Tong, X., Woodard, R. W., Du, G., Wu, J., & Chen, J. (2008). The Journal of Biological Chemistry, 283, 25854–25862.

    Article  CAS  Google Scholar 

  12. Badyakina, A. O., & Nesmeyanova, M. A. (2005). Process Biochemistry, 40, 509–518.

    Article  CAS  Google Scholar 

  13. Jana, S., & Deb, J. K. (2005). Applied Microbiology and Biotechnology, 67, 289–298.

    Article  CAS  Google Scholar 

  14. Mergulhao, F. J., Summers, D. K., & Monteiro, G. A. (2005). Biotechnology Advances, 23, 177–202.

    Article  CAS  Google Scholar 

  15. Blight, M. A., Chervaux, C., & Holland, I. B. (1994). Current Opinion in Biotechnology, 5, 468–474.

    Article  CAS  Google Scholar 

  16. Choi, J. H., & Lee, S. Y. (2004). Applied Microbiology and Biotechnology, 64, 625–635.

    Article  CAS  Google Scholar 

  17. Jena, B. P. (2007). Current Opinion in Structural Biology, 17, 437–443.

    Article  CAS  Google Scholar 

  18. Fett, W. F., Gerard, H. C., Moreau, R. A., Osman, S. F., & Jones, L. E. (1992). Current Microbiology, 25, 165–171.

    Article  CAS  Google Scholar 

  19. Loh, B., Grant, C., & Hancock, R. E. (1984). Antimicrobial Agents and Chemotherapy, 26, 546–551.

    CAS  Google Scholar 

  20. Park, S. J., Georgiou, G., & Lee, S. Y. (1999). Biotechnology Progress, 15, 164–167.

    Article  CAS  Google Scholar 

  21. Sorensen, H. P., & Mortensen, K. K. (2005). Journal of Biotechnology, 115, 113–128.

    Article  CAS  Google Scholar 

  22. Shokri, A., Sanden, A. M., & Larsson, G. (2003). Applied Microbiology and Biotechnology, 60, 654–664.

    CAS  Google Scholar 

  23. Jin, W., & Takada, S. (2008). Journal of Molecular Biology, 377, 74–82.

    Article  CAS  Google Scholar 

  24. Tang, J. B., Yang, H. M., Song, S. L., Zhu, P., & Ji, A. G. (2008). Food Chemistry, 108, 657–662.

    Article  CAS  Google Scholar 

  25. Hammes, W., Schleifer, K. H., & Kandler, O. (1973). Journal of Bacteriology, 116, 1029–1053.

    CAS  Google Scholar 

  26. Lehrer, R. I., Barton, A., & Ganz, T. (1988). Immunol Methods, 108, 153–158.

    Article  CAS  Google Scholar 

  27. Reese, E. T., & Maguire, A. (1969). Applied Microbiology, 17, 242–245.

    CAS  Google Scholar 

  28. Pugsley, A. P., Francetic, O., Possot, O. M., Sauvonnet, N., & Hardie, K. R. (1997). Gene, 192, 13–19.

    Article  CAS  Google Scholar 

  29. Chen, S., Su, L., Billig, S., Zimmermann, W., Chen, J., & Wu, J. (2010). Journal of Molecular Catalysis. B, Enzymatic, 63, 121–127.

    Article  CAS  Google Scholar 

  30. Yang, J., Moyana, T., MacKenzie, S., Xia, Q., & Xiang, J. (1998). Applied and Environmental Microbiology, 64, 2869–2874.

    CAS  Google Scholar 

  31. Hasenwinkle, D., Jervis, E., Kops, O., Liu, C., Lesnicki, G., Haynes, C. A., et al. (1997). Biotechnology and Bioengineering, 55, 854–863.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-tech Research and Development Program of China (863 Program, No. 2009AA02Z204), the Major State Basic Research Development Program of China (973 Program; no. 2007CB714306), the National Natural Science Foundation of China (no. 30970057), and the Open Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education (KLIB-KF200902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Chen or Jing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Liu, Z., Chen, J. et al. Study on Improvement of Extracellular Production of Recombinant Thermobifida fusca Cutinase by Escherichia coli . Appl Biochem Biotechnol 165, 666–675 (2011). https://doi.org/10.1007/s12010-011-9286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9286-z

Keywords

Navigation