Skip to main content
Log in

Malic acid accumulation by Aspergillus flavus

I. Biochemical aspects of acid biosynthesis

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The accumulation and excretion of l-malic acid, and to a lesser extent succinic and fumaric acids, by Aspergillus flavus occurs under aerobic conditions in a medium containing a high glucose concentration, a limiting amount of nitrogen and a neutralizing agent (CaCO3). An overall malic, succinic, and fumaric acid molar yield of up to 68.6% (moles of acid produced per mole of glucose utilized) is obtained after incubation for 6 to 8 days, although a transient molar yield of 76% was measured. Glucose consumption and formation of acids were faster in a fermentor than in shake flasks. During the acid production stage, the activity of malate dehydrogenase increased 6 to 10-fold while that of fumarase changed only slightly. Cycloheximide greatly inhibited both l-malic acid production and the increase in malate dehydrogenase activity, without affecting fumarase activity. The results suggest that de novo protein synthesis is involved in the increase of malate dehydrogenase and that this enzyme is essential for l-malic acid production and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe S, Furuya A, Saito T, Takayama K (1962) Method of producing l-malic acid by fermentation. U.S. Patent 3,063,910

  • Armitt S, McCullough W, Roberts CF (1976) Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol 92: 263–282

    Google Scholar 

  • Buck RE, Mottern HH (1947) I-Malic acid as by-product in apple syrup manufactured by ion exchange. Ind Eng Chem 39: 1087–1090

    Google Scholar 

  • Chibata IS, Tosa T, Sato T, Yamamoto K (1975) Verfahren zur Herstellung von l-Äpflelsäure und immobilisierter Fumarase produzierender Mikroorganismen zur Durchführung des Verfahrens. Ger Offenl 2: 450 137

    Google Scholar 

  • Dagen L, Odo N, Olivieri R (1974) Verfahren zur Herstellung von L-Äpfelsäure durch mikrobiologische Fermentation und Mittel zur Durchführung des Verfahrens. Ger Offenl 2 363 285

  • Duncan MJ, Fraenkel DG (1979) α-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti. J Bacteriol 37: 415–419

    Google Scholar 

  • Evans CT, Ratledge C (1985) The role of the mitochondrial NAD+: isocitrate dehydrogenase in lipid accumulation by the oleaginous yeast Rhodosporidium toruloides CBS 14. Can J Microbiol 31: 845–850

    Google Scholar 

  • Fatichenti F, Farris GA, Deiana P, Ceccarelli S (1984) Malic acid production and consumption by selected of Saccharomyces cerevisiae under anaerobic and aerobic conditions. Appl Microbiol Biotechnol 19: 427–429

    Google Scholar 

  • Furukawa T, Nakahara T, Yamada K (1970) Studies on the utilization of hydrocarbons by microorganisms. Part XX. Conversion of fumaric acid to l-malic acid by the association of two kinds of yeasts. Agric Biol Chem 34: 1833–1838

    Google Scholar 

  • Gardner WH (1966) Food Acidulants, Allied Chemical Corporation, New York

    Google Scholar 

  • Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Improved conversion of fumarate to succinate by Escherichi coli strains amplified for fumarate reductase. Appl Environ Microbiol 45: 1838–1847

    CAS  PubMed  Google Scholar 

  • Goldberg I, Stieglitz B (1985) Improved rate of fumaric acid production by Tweens® and vegetable oils in Rhizopus arrhizus. Biotech Bioeng 27: 1067–1069

    Google Scholar 

  • Goldberg I, Stieglitz B (1986) Fermentation process for production of carboxylic acids. U.S. Patent 4, 564,594

  • Kajiwara S, Maeda H (1986) Coimmobilization of malate dehydrogenase and formate dehydrogenase in polyethyleneglycol (# 4000) diacrylate gel by droplet gel-entrapping method. Biotech Bioeng 28: 1794–1800

    Google Scholar 

  • Kanhrek L, Hill RL (1964) The preparation and characterization of fumarase from swine heart muscle. J Biol Chem 239: 4202–4206

    Google Scholar 

  • Kenealy W, Zaady E, du Preez JC, Stieglitz B, Goldberg I (1986) Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl Environ Microbiol 52: 128–133

    CAS  Google Scholar 

  • Kimura T, Kawabata Y, Sato E (1986) Enzymatic production of l-malate from maleate by Alcaligenes sp. Agric Biol Chem 50: 89–94

    Google Scholar 

  • Kitahara K (1969) Verfahren zur Herstellung von l-Äpfelsäure. Ger Offenl 1 417 033

    Google Scholar 

  • Kitto GB (1969) Intra-and extramitochondrial malate dehydrogenase from chicken and tuna heart. Methods Enzymol 13: 106–116

    Google Scholar 

  • Lehninger AL (1981) Biochemistry, Worth Publishers, Inc., New York

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  • Ng TK, Hesser RJ, Stieglitz B, Griffiths BS, Ling LB (1986) Production of tetrahydrofuran/1,4 butanediol by a combined biological and chemical process. Biotech Bioeng Symp 17: 355–363

    Google Scholar 

  • Osmani JA, Scrutton MC (1983) The sub-cellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur J Biochem 133: 551–560

    Google Scholar 

  • Peleg Y, Rahamim E, Kessel M, Goldberg I (1988) Malic acid accumulation by Aspergillus flavus. II. Crystals and hairlike processes formed by A. flavus in a l-malic acid production medium. Appl Microbiol Biotechnol 28: 76–79

    Google Scholar 

  • Rhodes RA, Moyer AJ, Smith ML, Kelley SE (1959) Production of fumaric acid by Rhizopus arrhizus. Appl Microbiol 7: 74–80

    Google Scholar 

  • Romano AH, Bright MM, Scott WE (1967) Mechanism for fumaric acid accumulation in Rhizopus nigricans. J Bacteriol 93: 600–604

    Google Scholar 

  • Rossi J, Clementi F (1985) l-Malic acid production by polyacrylamide gel entraped Pichia membranaefaciens. Biotechnol Lett 7: 329–334

    Google Scholar 

  • Sasaki Y, Takao S (1967) Organic acid production by Basidiomycetes III. Cultural conditions for l-malic acid production. Appl Microbiol 15: 373–377

    Google Scholar 

  • Sato S, Nakahara T, Minoda Y (1977) Enzymalic studies on l-malic acid production from n-paraffins by Candida brumptii IFO-0731. Agric Biol Chem 41: 1903–1907

    Google Scholar 

  • Shimada K, Matsushima K, Fukumoto J, Yamamoto T (1969) Poly-(l)-malic acid: a new protease inhibitor from Penicillium cyclopium. Biochim Biophys Res Commun 35: 619–624

    Google Scholar 

  • Strauss ES, Klein D, Kamalari O, Garnett A (1985) Citric acid. Chemical Economics Handbook. SRI International

  • Tachibana S, Murakami T (1973) l-Malate production from ethanol and calcium carbonate by Schizophyllum commune. J Ferment Technol 51: 858–864

    Google Scholar 

  • Takao S, Yokota A, Tanida M (1983) l-Malic acid fermentation by a mixed culture of Rhizopus arrhizus and Paecilomyces varioti. J Ferment Technol 61: 643–645

    Google Scholar 

  • Takao S, Hotta K (1976) Conversion of fumaric acid fermentation to l-malic acid fermentation by the association of Rhizopus arrhizus and Proteus vulgaris. J Ferment Technol 54: 197–204

    Google Scholar 

  • Takao S, Tanida M, Kuwabara H (1977) l-Malic acid production from non-sugar carbon sources by Paecilomyces varioti. J Ferment Technol 55: 196–199

    Google Scholar 

  • Veeger C, Der Vartanian DV, Zeylemaker WP (1969) Succinate dehydrogenase. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 13, Academic Press, New York and London, p 81

    Google Scholar 

  • Yamamoto K, Tosa T, Yamashita K, Chibata I (1976) Continuous production of l-malic acid by immobilized Brevibacterium ammoniagenes cells. Eur J Appl Microbiol 3: 169–183

    Google Scholar 

  • Yamazaki Y, Maeda H, Kamibayashi A (1982) The long-term production of l-malate by the coimmobilized NAD and dehydrogenases. Biotech Bioeng 24: 1915–1918

    Google Scholar 

  • Yukawa H, Yamagata H, Terasawa M (1986) Production of l-malic acid by the cell reusing process. Process Biochem 10: 164–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleg, Y., Stieglitz, B. & Goldberg, I. Malic acid accumulation by Aspergillus flavus . Appl Microbiol Biotechnol 28, 69–75 (1988). https://doi.org/10.1007/BF00250501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250501

Keywords

Navigation