Skip to main content
Log in

Cloning of Two Genes (LAT1,2) Encoding Specific l-Arabinose Transporters of the l-Arabinose Fermenting Yeast Ambrosiozyma monospora

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We identified and characterized two genes, LAT1 and LAT2, which encode specific l-arabinose transporters. The genes were identified in the l-arabinose fermenting yeast Ambrosiozyma monospora. The yeast Saccharomyces cerevisiae had only very low l-arabinose transport activity; however, when LAT1 or LAT2 was expressed, l-arabinose transport was facilitated. When the LAT1 or LAT2 were expressed in an S. cerevisiae mutant where the main hexose transporters were deleted, the l-arabinose transporters could not restore growth on d-glucose, d-fructose, d-mannose or d-galactose. This indicates that these sugars are not transported and suggests that the transporters are specific for l-arabinose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pedrosa, F. O., & Zancan, G. T. (1974). L-Arabinose metabolism in Rhizobium japonicum. Journal of Bacteriology, 119, 336–338.

    CAS  Google Scholar 

  2. Novick, N. J., & Tyler, M. E. (1982). L-Arabinose metabolism in Azospirillum brasiliense. Journal of Bacteriology, 149, 364–367.

    CAS  Google Scholar 

  3. Lee, N., Gielow, W., Martin, R., Hamilton, E., & Fowler, A. (1986). The organization of the araBAD operon of Escherichia coli. Gene, 47, 231–244.

    Article  CAS  Google Scholar 

  4. Chiang, C., & Knight, S. G. (1960). A new pathway of pentose metabolism. Biochemical and Biophysical Research Communications, 3, 554–559.

    Article  CAS  Google Scholar 

  5. Mojzita, D., Penttilä, M., & Richard, P. (2010). Identification of an L-arabinose reductase gene in Aspergillus niger and its role in L-arabinose catabolism. The Journal of Biological Chemistry, 285, 23622–23628.

    Article  CAS  Google Scholar 

  6. de Groot, M. J. L. (2005). Regulation and control of L-arabinose catabolism in Aspergillus niger. PhD thesis, University of Wageningen, Wageningen, The Netherlands.

  7. Mojzita, D., Vuoristo, K., Koivistoinen, O. M., Penttilä, M., & Richard, P. (2010). The ‘true’ L-xylulose reductase of filamentous fungi identified in Aspergillus niger. FEBS Letters, 584, 3540–3544.

    Article  CAS  Google Scholar 

  8. Witteveen, C. F. B., Busink, R., van de Vondervoort, P., Dijkema, C., Swart, K., & Visser, J. (1989). L-Arabinose and D-xylose catabolism in Aspergillus niger. Journal of General Microbiology, 135, 2163–2171.

    CAS  Google Scholar 

  9. Fonseca, C., Romão, R., Rodrigues de Sousa, H., Hahn-Hägerdal, B., & Spencer-Martins, I. (2007). L-Arabinose transport and catabolism in yeast. The FEBS Journal, 274, 3589–3600.

    Article  CAS  Google Scholar 

  10. Verho, R., Putkonen, M., Londesborough, J., Penttilä, M., & Richard, P. (2004). A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast. The Journal of Biological Chemistry, 279, 14746–14751.

    Article  CAS  Google Scholar 

  11. Becker, J., & Boles, E. (2003). A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Applied and Environmental Microbiology, 69, 4144–4150.

    Article  CAS  Google Scholar 

  12. Richard, P., Verho, R., Putkonen, M., Londesborough, J., & Penttilä, M. (2003). Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Research, 3, 185–189.

    Article  CAS  Google Scholar 

  13. Lucas, C., & van Uden, N. (1986). Transport of hemicellulose monomers in the xylose fermenting yeast Candida shehatae. Applied Microbiology and Biotechnology, 23, 491–495.

    Article  CAS  Google Scholar 

  14. Kou, S.-C., Christensen, M. S., & Cirillo, V. P. (1970). Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinase less cells. Journal of Bacteriology, 103, 671–678.

    CAS  Google Scholar 

  15. Reifenberger, E., Boles, E., & Ciriacy, M. (1997). Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. European Journal of Biochemistry, 245, 324–333.

    Article  CAS  Google Scholar 

  16. Liang, H., & Gaber, R. F. (1996). A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Molecular Biology of the Cell, 7, 1953–1966.

    CAS  Google Scholar 

  17. Richard, P., Londesborough, J., Putkonen, M., Kalkkinen, N., & Penttilä, M. (2001). Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene. The Journal of Biological Chemistry, 276, 40631–40637.

    Article  CAS  Google Scholar 

  18. Richard, P., Putkonen, M., Väänänen, R., Londesborough, J., & Penttilä, M. (2002). The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochemistry, 41, 6432–6437.

    Article  CAS  Google Scholar 

  19. Sherman, F., Fink, G., & Hicks, J. B. (1983). Methods in yeast genetics. A laboratory manual. Cold Springs Harbour: Cold Springs Harbour Laboratory.

    Google Scholar 

  20. Minet, M., & Lacroute, F. (1990). Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae. Current Genetics, 18, 287–291.

    Article  CAS  Google Scholar 

  21. Bisson, L. F., & Fraenkel, D. G. (1983). Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 80, 1730–1734.

    Article  CAS  Google Scholar 

  22. Becker, J. (2002). Konstruktion und Charakterisierung eines L-arabinose fermentierenden Saccharomyces cerevisiae Hefestammes. PhD thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf.

  23. Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148, 2783–2788.

    CAS  Google Scholar 

  24. Weierstall, T., Hollenberg, C. P., & Boles, E. (1999). Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Molecular Microbiology, 31, 871–883.

    Article  CAS  Google Scholar 

  25. Leandro, M. J., Fonseca, C., & Gonçalves, P. (2009). Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Research, 9, 511–525.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Academy of Finland through the following programmes: an Academy Research Fellowship for P.R. and the Finnish Centre of Excellence in White Biotechnology—Green Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verho, R., Penttilä, M. & Richard, P. Cloning of Two Genes (LAT1,2) Encoding Specific l-Arabinose Transporters of the l-Arabinose Fermenting Yeast Ambrosiozyma monospora . Appl Biochem Biotechnol 164, 604–611 (2011). https://doi.org/10.1007/s12010-011-9161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9161-y

Keywords

Navigation